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A B S T R A C T

In this paper, we focus on visual complexity, an image attribute that humans can subjectively evaluate based
on the level of details in the image. We explore unsupervised information extraction from intermediate
convolutional layers of deep neural networks to measure visual complexity. We derive an activation energy
metric that combines convolutional layer activations to quantify visual complexity. To show the effectiveness
of our proposed metric for various applications, we introduce Savoias, a visual complexity dataset that
compromises of more than 1,400 images from seven diverse image categories (e.g., advertisement and interior
design). We demonstrate high correlations of our deep neural network-based measure of visual complexity with
human-curated ground-truth (GT) scores on various widely used network architectures, e.g., VGG16, ResNet-
v2-152, and EfficientNet, and in networks trained on two classification tasks (object and scene classification).
This result reveals that intermediate convolutional layers of deep neural networks carry information about the
complexity of images that is meaningful to people. Furthermore, we show that our method of measuring visual
complexity outperforms traditional methods on Savoias and two other state-of-the-art benchmark datasets.
Moreover, we perform extensive analysis on the performance difference between our unsupervised method
and a supervised method trained on the feature map, and show that by supervision, we can improve the
prediction. Finally, we demonstrate that, within the context of a category, visually more complex images are
also more memorable to human observers.

1. Introduction

In recent years, deep learning has revolutionized research in com-
puter vision. The use of deep neural networks, in particular, has en-
abled the design of solutions to many computer vision tasks. Deep
neural networks perform millions of computations in their hidden
layers that transcend the usefulness of the network beyond the task
they were originally designed for. Attempts to extract such information
have mainly focused on two approaches, high-level semantic feature
representations extracted from deep layers and re-use of pre-trained
networks for transfer learning (Wang et al., 2015; Yosinski et al., 2014;
Tzeng et al., 2015; Huh et al., 2016).

Feature extraction from intermediate convolutional layers, espe-
cially those related to attributes directly mapped to human perception,
has been less explored (Zhang et al., 2016; Liu and Han, 2016; Si-
monyan et al., 2013; Li and Yu, 2015). As opposed to deep features
extracted from fully-connected layers of a deep network, the use of
features extracted from intermediate convolutional layers has three
important advantages. First, they can be extracted straightforwardly,
irrespective of the input image size or aspect ratio. Second, they carry
spatial information corresponding to receptive fields of particular fea-
tures in the local regions of an image. And third, specifically in in-
termediate layers, they are more transferable and less domain or task
specific.
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In this work, we contribute to the exploration of how information
computed by intermediate hidden layers can be utilized. We consider
the activations from convolutional layers of deep neural networks as
‘‘feature maps" and propose a metric that correlates with a certain
visual attributes of images. Here we focus on visual complexity, an
image attribute that humans can also subjectively quantify.

Visual complexity is a broad concept with decades of basic and
applied research in a variety of areas such as computer vision and
other areas of computing, psychophysics and cognitive psychology,
product design, and marketing. Various definitions can be found in
the literature. One definition relates visual complexity to the level of
intricacy and details in an image, or the level of difficulty of a human
observer to describe an image (Heaps and Handel, 1999; Snodgrass and
Vanderwart, 1980). Another definition of visual complexity is based
on the level of visual clutter and the amount of information conveyed
in the image, which then relates the study of visual complexity to the
fields of image compression and information theory (Rosenholtz et al.,
2007).

Analysis of visual complexity is connected to a variety of prob-
lems in the field of computer vision. For example, visual clutter is
a determining factor in measuring the difficulty of a visual search
task (Ionescu et al., 2016). Other important computer vision tasks,
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Fig. 1. Energy maps overlaid on sample images of the proposed SAVOIAS dataset along with the ground-truth (GT) visual complexity and our proposed Unsupervised Activation Energy
method (UAE) scores. The top samples are selected from the ‘‘Scene’’ category, the bottom from the ‘‘Advertisement’’ category. AE, extracted from an intermediate convolutional
layer of a deep network trained for visual analysis, correlates highly with GT complexity. This shows that, even at the intermediate layer, such networks carry information beyond
the task they were originally designed for, and that this information correlates with what humans perceive as the complexity of an image.

such as automatically creating image captions, detecting objects, or
segmenting object outlines, are particularly challenging for images of
cluttered scenes with many objects that are partially occluded. Another
topic is image memorability, which, as visual complexity, is an image
attribute related to human perception. In this paper, we show that
memorability can be estimated based on the visual complexity of the
image. Furthermore, a visual question answering (VQA) algorithm may
benefit from analysis of the complexity of image regions – a visually
complex region is likely to need more algorithm-generated questions
and answers, and a visual complexity map can guide the VQA towards
where to look for questions and answers.

Understanding visual complexity of images is not only relevant
to computer vision – it is also beneficial in the context of computer
graphics and crowdsourcing. With regards to graphics, for example,
the more complex a 3D scene is, the more time it takes for an al-
gorithm to render it (Ramanarayanan et al., 2008a). With regards
to crowdsourcing, evaluating the difficulty level of a vision task is
essential for assigning the adequate number of internet workers to
that task (Sameki et al., 2019). A measure of visual complexity can
be used to estimate this difficulty level. Moreover, visual complexity
carries significant information that can lead to solutions in other fields,
including artwork, marketing, advertising, and web design (Machado
et al., 2015; Ramanarayanan et al., 2008b; Reinecke et al., 2013).

For quantifying visual complexity, various factors have been stud-
ied in the literature. Image colorfulness, edge density, luminance,
patterns, mirror symmetry, and number of objects are some of the
examples (Mack and Oliva, 2004; Rosenholtz et al., 2007; Gartus and
Leder, 2017). However, depending on the type of image, e.g., whether it
contains abstract patterns versus real-world scenes, the contributions of
these factors towards representing its complexity are different. Super-
vision is needed to tune the contribution of each of these factors. This
requires access to additional information about the image data and can
make a learning algorithm more prune to overfitting.

To overcome the need for tuning, we introduce the Unsupervised
Activation Energy (UAE) method, which is based on analyzing the
activations in the intermediate convolutional layers of a deep neural
network. We show a few example images with their UAE-predicted
visual complexity scores as well as human-curated ground-truth scores
in Fig. 1. The overlaid energy maps visualize the image regions which
contribute to the UAE-predicted visual complexity scores.

To showcase the applicability of our method to different net-
work architectures for predicting visual complexity, we include the
VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016),

Inception (Szegedy et al., 2017), DenseNet (Huang et al., 2017), Mo-
bileNet (Howard et al., 2017), and the state-of-the-art EfficientNet (Tan
and Le, 2019) network architectures in our experiments. In addition, to
demonstrate that the proposed method can predict visual complexity
from the layers that are not task or domain specific, we perform
experiments for two tasks, object classification, with network pre-
trained on the ImageNet dataset (Krizhevsky et al., 2012), and scene
recognition, with network pretrained on the Places dataset (Zhou et al.,
2017). It has recently been shown that the structure of a generator
network is sufficient to capture a great deal of low-level image statistics
prior to any learning (Ulyanov et al.). To examine whether such a
statement holds for our application with classification networks, we
further explored the use of untrained network architectures to predict
of image visual complexity.

Due to the wide range of applications for the analysis of visual
complexity, the study of visual complexity requires adequate amounts
of data for different types of images. Although some image datasets
with ground-truth labels for visual complexity exist, they are either
very small or lack diversity (both in number and type of categories,
as well as diversity of image content and appearance within each
category). In addition, the methodologies to obtain the ground truth
for these datasets are not consistent and in most cases, they are based
on a limited-point Likert scale. To overcome these limitations, we here
introduce Savoias, a new dataset for the analysis of visual complexity.
Savoias covers a variety of topics and provides a sufficient number of
images per topic, therefore improving diversity and scale of publicly
available datasets. Specifically, Savoias consists of seven diverse cate-
gories and a total of 1,420 images. Savoias is an acronym for Scenes,
Advertisement, Visualization and infographics, Objects, Interior design,
Art, and Suprematism (a category of art).

In order to minimize the potential bias from individual ground-truth
contributors and limited rating scales, we obtained the ground-truth la-
bels using a forced-choice pairwise crowdsourcing methodology. Labels
were obtained from 1,687 contributors on more than 37,000 pairs of
images. The pairwise scores were then converted to absolute scores on a
[0,100] rating scale using the Bradley–Terry (Bradley and Terry, 1952)
and matrix completion (Candès and Recht, 2009) methods.

Our results show the superiority of the proposed UAE method in
quantifying visual complexity compared to existing methods. Moreover,
we perform analysis to compare the unsupervised method with a
supervised method trained on the same feature maps extracted from
convolutional layers of the deep neural network and show that im-
provement can be made by training a supervised model on the feature
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maps. Finally, we investigate the relationship between visual complex-
ity and image memorability and show that within the context of scene
categories, image categories that are more visually complex are also
more memorable.

To summarize, in this paper, we make the following contributions:

• We investigate the unsupervised extraction of information from
convolutional layers of neural networks with regard to visual
complexity and devise the Unsupervised Activation Energy (UAE)
method.

• We introduce SAVOIAS, a publicly-available dataset for the analy-
sis of visual complexity. We obtained detailed ground-truth labels
(a [0,100] scale) using a forced-choice crowdsourcing methodol-
ogy involving more than 37,000 comparisons.

• We show that scores obtained by our UAE method correlate
with the qualitative measurements of visual complexity based
on human perception. Our UAE method outperforms all previous
work about the analysis of visual complexity on SAVOIAS and two
other datasets.

• We compare the performance of our unsupervised method with
the supervised Activation Energy (SAE) method trained on the
same feature maps extracted from convolutional layers of a deep
neural network and show that the prediction results can be im-
proved by supervision. To the best of our knowledge, there is no
publicly available supervised approach detailed in the literature
to which we could compare our supervised method.

• We show that, within the context of a category, visually more
complex images are also more memorable to human observers.

The rest of the paper is organized as follows: We review the pre-
vious work in Section 2. Our proposed methodology is explained in
Section 3. Section 4 describes our proposed dataset. Our experiments
are discussed in Section 5. In Section 6, we compare the unsupervised
approach (UAE) with our supervised approach (SAE). In Section 7, we
investigate the relationship between image visual complexity and im-
age memorability as an application of our method. Finally in Section 8,
we discussion our conclusions.

2. Related work

Visual complexity has been studied extensively in various fields such
as psychophysics, cognitive science, and more recently in computer
vision. While the temporal dimension of complexity is an interesting
topic of research (Cardaci et al., 2009; Marin and Leder, 2016; Palumbo
et al., 2014), in this work, we focus on the spatial dimension of visual
complexity and algorithmic approaches to quantify it.

In this section, we begin with discussing the applications of the
visual complexity in other domains. We then review the previous
work focused on quantifying visual complexity on different types of
images and explain how our work is related to other problems such as
saliency and image compression. Lastly, we summarize couple of works
that study feature extraction from convolutional layers of deep neural
network for different vision tasks.

2.1. Visual complexity in other fields

Visual complexity and aesthetic beauty have been shown to be
related (Birkhoff, 1933; Eysenck, 1941; Jacobsen and Höfel, 2001;
Reinecke et al., 2013). In one of the earlier works on visual complexity,
(Birkhoff, 1933) defines aesthetic measure M of an art object as a func-
tion of the ratio between its order and complexity (M=f(O/C)), where O
stands for order, often found in the forms of harmony or symmetry and
C stands for complexity. Based on his formula, the aesthetic measure
(M) of an art object decreases with increase in complexity.

Furthermore, Visual complexity has been found to be a dominant
factor in determining the pleasingness of a stimulus and to be related
to aesthetic preference for artistic works (Forsythe et al., 2011). It has

been shown that the relation between visual complexity and prefer-
ence follows an inverted U-curve, in which images with intermediate
levels of visual complexity are most appealing (Berlyne, 1971). The
perception of appeal of a web page design has been shown to have a
connection to the visual complexity of the web page (Reinecke et al.,
2013), and thus, understanding the visual complexity of a design can
lead to a better subjective experience for viewers (Krishen, 2008).

Studies show that in hedonic shopping experiences, shoppers are
more satisfied with mall interiors that have a higher perceived com-
plexity, while in utilitarian shopping experiences, shoppers prefer lower
visual complexity (Haytko and Baker, 2004). For online shopping, the
perceived visual complexity has been shown to negatively influence
individuals’ satisfaction (Sohn et al., 2017).

Visual impression of advertisement images plays a crucial role in
engaging viewers. Two different types of perceptual complexity have
been considered for advertisement: feature complexity, which depends
on image features, and design complexity, which depends on the cre-
ative design of the image. It has been argued that feature complexity
hurts attention to the brand, whereas design complexity can improve
the consumer’s attention (Pieters et al., 2010).

2.2. Algorithms to quantify visual complexity

In one of the early works on visual complexity, Chipman (1977)
explained the importance of two factors in the analysis of visual com-
plexity of simple abstract patterns – a quantitative factor (related to
amount of elements), which correlates positively with visual com-
plexity, and a structural element (determined by different forms of
structural organization, but mostly by symmetry), which correlates
negatively with visual complexity (see also, Chipman and Mendelson
(1979)). Following a similar approach, recent studies explored the
impact of these two factors on the visual complexity of complex ab-
stract patterns (Gartus and Leder, 2013, 2017) and images in four
image categories (abstract artistic or non-artistic and representational
artistic or non-artistic), which included three complexity levels (low,
intermediate, and high) (Nadal et al., 2010).

Fan et al. (2017) introduced three features, color richness, stroke
thickness, and white spaces, to evaluate the visual complexity of Chi-
nese ink paintings. Miniukovich and Angeli (2014) proposed the five
factors visual clutter, symmetry, contour density, figure-ground con-
trast, and color variability to encapsulate visual complexity for web
design and GUI applications.

Oliva et al. (2004) studied the role of a task constraint on represen-
tation of visual complexity. They argued that although the contribution
of the perceptual dimensions are affected by task constraints, visual
complexity can still be represented by perceptual dimensions such
as quantity of objects, clutter, openness, symmetry, organization, and
variety of colors. The notion of clutter can be captured by measuring
the density of edges in an image (Mack and Oliva, 2004).

Visual complexity is also related to image saliency. One of the
common measures to predict visual complexity is feature congestion,
which is derived from an image saliency model. This measure can be
described by the analogy that it is more difficult to add an attention-
grabbing component to a visual interface that is already very busy
than to an interface that is not (Rosenholtz et al., 2007). To evaluate
the relation between attention and image complexity, Da Silva et al.
(2011) studied the correlation between human eye movements as well
as different models of computational attention against a ground-truth of
image complexity. Their experimental results, confirmed the existence
of such correlation between attentional behavior and image visual
complexity. Moreover, to predict the visual complexity of paintings, it
has been argued that in addition to the global and local features, salient
region features should be considered (Guo et al., 2018). The purpose
of the global and local features are to capture the characteristics of
the first impression of the viewer and the regional information of the
painting, respectively; while the salient region features represent the
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Table 1
The datasets previously used in visual complexity studies, as well as our proposed dataset. A ‘‘1-step’’ process means that the users were asked to directly rate the visual complexity
of a single image; ‘‘Shared’’ means the dataset may be shared with other researchers upon request. *Sample images of these datasets are shown in Figures 2, 8, and 9.

Reference # Images Application category Ground-truth
process

Vis. Comp.scale Opensource

(Gartus and Leder, 2013)* 912 Black and white 8 × 8 abstract patterns 1-step 5-point Shared
(Nadal et al., 2010) 120 Abstract & representational (artistic & non-artistic) 1-step 3-point No
(Oliva et al., 2004) 100 Indoor scenes 3-step 8-point No
(Miniukovich and Angeli, 2014) 142 Webpage 1-step 5-point Yes
(Fan et al., 2017) 40 Chinese ink painting (abstract and representational) 1-step 7-point Shared
(Schnur et al., 2018) 9 Web maps 1-step 5-point No
(Corchs et al., 2016)(RSIVL)* 98 Real-world scenes 1-step [0-100] Shared
(Corchs et al., 2016) 122 Textures 1-step [0-100] Shared
Ours* 1,420 Scenes, advertisement, visualizations, objects,

interior design, art, Suprematism
Pairwise
comparison

[0–100] Yes

characteristics of the most visually important region of a painting for
the viewer.

Visual complexity can be approximated using compression algo-
rithms (Rosenholtz et al., 2007), defining it by the resulting file size
when a compression algorithm such as JPEG or ZIP is applied to a
given image. One of the common methods to quantify visual com-
plexity from information-theoretic perspective is the subband entropy
measure (Rosenholtz et al., 2007). This algorithm is derived based
on the notion that clutter is related to the number of bits required
for subband (wavelet) image coding. Recently compression algorithms
based on deep neural network and recurrent neural networks have
shown to provide promising results in terms of subjective quality of
compressed images (Liu et al.; Toderici et al., 2017), when evaluated
by measures inspired by human visual system (Wang et al., 2003;
Gupta et al., 2011). For example, a combination of a perception loss
and an adversarial loss is proposed to train a deep image compression
model (Liu et al.). Rather than calculating distortions directly in pixel
domain, these loss functions measure the similarity in high-level feature
domain. As a result, this compression algorithm can better mimic the
discriminative characteristics of the human visual system.

A linear combination of multiple features such as edge density,
compression ratio, and number of objects has also been studied (Corchs
et al., 2016). However, for combining the features, a supervised algo-
rithm is required to set the weights assigned to each of these features.
The stimuli used in these experiments were real scene or texture
images.

In another study (Schnur et al., 2018), visual complexity of the
interfaces of three different online map providers (Google Maps, Bing
Maps, and OpenStreetMaps) was explored with the objective to better
understand design decisions for Web maps. The study results imply that
clutter, measured by feature congestion, is more important in perceived
complexity than diversity of symbology.

Here, we discussed image features that contribute to visual complex-
ity. We note that a single feature cannot perform well for all possible
types of images. Supervision is required to combine various features
in measuring visual complexity and adjust their contributions for a
specific image category. Thus, previous multidimensional models are
mostly designed to predict the visual complexity of images in a specific
image category. To address the problem of generalization, here, we
propose an unsupervised method to quantify the visual complexity of
images. Since our method inherently encompasses different types of
features, no further supervision is required. It can thus quantify the
visual complexity of different types of images.

2.3. Datasets

The characteristics of several visual complexity datasets are sum-
marized in Table 1. The table shows differences in scales and image
collection methods, as well as our approach to establish ground truth,
and reveals that the diversity and number of samples in these datasets
are in need of improvement for extensive analysis of visual complexity.

It is also worth noting that not all the datasets mentioned above are
publicly available or shared among researchers.

Savoias is introduced to address the lack of an appropriate dataset
with an adequate number of diverse images and a reliable and fine-
grained ground-truth value for visual complexity. Savoias is a new
dataset, consisting of more than 1,400 sample images that are orga-
nized in seven categories, selected to show a great deal of variety. In
order to obtain ground truth values for the visual complexity of these
images, instead of asking the participants to rate the visual complexity
of a particular image on a continuous scale, we asked them to compare
the visual complexity of two images. The pairwise comparison method-
ology helps avoid rating biases and also provides a more fine-grained
range of scores compared to the common 3, 5, or 7-scale ratings used
in the aforementioned datasets.

2.4. Feature extraction from convolutional layers of deep neural network

The use of convolutional layers of deep neural networks to provide
local image descriptors, or auxiliary features to represent edges or
textures has been shown to produce state-of-the-art results in various
application such as semantic image segmentation, super-resolution and
image retrieval (Cimpoi et al., 2016; Liu et al., 2015; Babenko and
Lempitsky, 2015; Razavian et al., 2016; Ng et al., 2015; Yang et al.;
Paulin et al., 2017; Uricchio et al.; Gordo et al., 2017).

It has been shown that the intermediate CNN features can be utilized
in the semantic image segmentation task to produce task-specific edges
in an end-to-end trainable system (Chen et al., 2016). Such systems
can be an alternative to the fully-connected conditional random fields
to enhance their object localization accuracy, while being less compu-
tationally expensive. Additionally, to recover the fine texture details of
an image in a super-resolution problem, the use of feature maps from
a deep neural network is proposed (Ledig et al., 2017). In this work, in
addition to the adversarial loss, the authors introduced a second content
loss based on the high-level feature map to represent the perceptual
similarity instead of similarity in pixel space. The activations from the
convolutional layers of a deep neural network have also been utilized
to encode images into compact global signatures for the instance-level
image retrieval task (Gordo et al., 2016).

Activated features of deep neural networks can also be incorporated
in the context of visual similarity and image quality assessment (Amir-
shahi et al., 2017; Zhang et al., 2018; Gao et al., 2017; Kim and
Lee, 2017). Gao et al. (2017) and Amirshahi et al. (2017) propose
techniques involving leveraging internal activations of deep networks
for image quality assessment. To evaluate the applicability of deep
features in assessing the human perceptual similarity judgments, Zhang
et al. (2018) conducted a study across different architectures. They
concluded that networks trained to solve visual prediction and mod-
eling tasks are capable of learning a representation of the world that
correlates well with perceptual judgments.

Aligned with the aforementioned works, we focus on the activated
features in the deep neural networks. In our work, however, we ex-
amine multiple architectures and tasks, and we focus on extracting
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Fig. 2. Visualization of the activations from five max-pooling layers of the VGG architecture (Simonyan and Zisserman, 2014) trained for scene recognition. Each visualization
shows what type of features are activated in each layer, by indicating the average of activated neurons for the corresponding spatial coordinate (high activation red, low activation
blue). Image edges are best represented by the output of the first pooling layer; high-level features can be extracted from the output of the fifth (last) pooling layer. The image is
taken from the RSIVL dataset (RSIVL, 2016).

descriptors as standalone features to predict visual complexity, an image
attribute that can be directly mapped to a quality of an image that
humans can quantify.

3. Approach

Deep neural networks consist of multiple layers, each responsible
to activate different types of features. Here we investigate how we can
extract visual complexity information from the feature maps of these
layers.

3.1. Unsupervised activation energy (UAE) method

In order to quantify visual complexity, we devise a simple metric
based on the feature maps of neural network layers. We define our
metric for each layer simply as the average over all values of the
receptive fields and all the channels in a layer, i.e.,

𝑈𝐴𝐸(𝑙) = 1
ℎ ×𝑤 × 𝑑

ℎ
∑

𝑖=1

𝑤
∑

𝑗=1

𝑑
∑

𝑘=1
𝐹𝑙[𝑖, 𝑗, 𝑘], (1)

where 𝐹 is the feature map, 𝑙 is the layer number, and ℎ, 𝑤, and 𝑑
are height, width, and depth (number of channels) of the feature map,

respectively. Note that, in the deep networks we consider, the extracted
feature maps are outputs of rectified linear units, ensuring that the
values in the feature maps are all non-negative, and, thus, UAE(l) is also
non-negative. We refer to the feature map of a given layer, averaged
over the channels and thus preserving the spatial information of the
activated features, as its energy map:

𝐸𝑛𝑒𝑟𝑔𝑦 𝑚𝑎𝑝𝑙[𝑖, 𝑗] =
1
𝑑

𝑑
∑

𝑘=1
𝐹𝑙[𝑖, 𝑗, 𝑘]. (2)

Examples of energy maps, computed for different convolutional layers
in the VGG architecture, are shown in Fig. 2.

3.2. Utility of different convolutional layers in quantifying visual complexity

We measure the Pearson correlation coefficient (PCC) between fea-
ture maps of an image in different convolutional layers of a deep
neural network and the human-curated score of visual complexity of the
image. Such a correlation can be interpreted as a direct measurement
of how much information a specific layer carries with respect to the
visual complexity of the input image.

To evaluate the correlation between our unsupervised activation en-
ergy method and human-perceived visual complexity, measured by the
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Fig. 3. Pearson correlation between the Unsupervised Activation Energy of an output layer and the human-curated visual complexity score as a function of layer number (1,..,5). The
correlation for models trained for object classification with the architectures ResNet, Inception, and VGG are shown in the first three panels. The graphs in the last two panels are
presented here to enable visual comparison of the results for the same architecture (VGG) for two different classification tasks, namely, object classification and scene recognition.
The four graphs have an arch shape. The top of the arch indicates a significant correlation (up to 0.77) between human-curated visual complexity and the unsupervised activation
energy of intermediate layers for these examined cases. These results are obtained for the Scene category of SAVOIAS dataset. Similar results obtained from other architectures
pretrained on Imagenet are not presented for brevity.

Pearson correlation coefficient, we examine multiple widely-used net-
work architectures, namely, VGG-16 (Simonyan and Zisserman, 2014),
ResNet-v2-152 (He et al., 2016), Inception-v4 (Szegedy et al., 2017),
DenseNet (Huang et al., 2017), MobileNet (Howard et al., 2017), and
the state-of-the-art EfficientNet (Tan and Le, 2019). We selected five
convolutional layers for each architecture for our study, such that
activated neurons from different layers of the deep architectures are
evaluated in our analysis. All these networks are pre-trained on the
ImageNet dataset.

In addition, to further investigate how different models pretrained
for different tasks correlate with visual complexity, we evaluate VGG-
16 when pretrained on the Places dataset as well as the untrained
network and the results are compared against the ImageNet dataset.

Deep neural networks learn their task by first extracting low-level
features (edges, corners) in the early layers. These lines are then
convolved to form higher-level features, and the content of the image is
extracted in the deeper layers. As known from previous studies, various
image factors, including both low-level features (e.g., edge density or
patterns) and high-level features (e.g., number of objects or image
content), impact visual complexity, and, thus, simply quantifying one
type of features is not an adequate method for determining the visual
complexity of an image.

Our analysis revealed that the UAE scores of the first two and the
last layers have lower correlations with the human-curated scores than
the UAE scores of the intermediate layers (Fig. 3). This observation
confirms that the first layers, mostly representing edges, corners, etc.,
lack the kind of higher-level information needed to capture the concept
of visual complexity. Similarly, the last layer of models trained for
object classification does not yield consistently high correlations either,
showing that although the existence of objects in an image affects its
visual complexity, that alone is not sufficient information for evaluating
visual complexity adequately. The intermediate convolutional layers,
however, in all four models, show significantly higher correlation, and,
therefore, are suitable representatives of visual complexity. The high
correlation values we obtained reaffirm the importance of both lower-
and higher-level features (here, output of layers 3 and 4) for evaluation
of visual complexity.

Here we argue, in the transition from the low-level features to
higher-level features in the convolutional layers of a deep neural net-
work, there are layers that carry information about both types of
features, and, thus, we can extract metrics from these layers that
correlate with visual complexity. Further analysis will be provided in
Section 5 after our dataset is introduced.

4. Dataset description

In this section, we introduce SAVOIAS, our visual complexity dataset.
To date, SAVOIAS is the largest and most diverse open-source visual
complexity dataset with 1,420 images in seven categories. In this
section, we will first describe our image collection process and the
different categories that we have used in our dataset. Next, we will
explain the data annotation process.

4.1. Image collection

In our dataset, we have used images from seven diverse categories.
Examples from each category in the increasing order of visual com-
plexity are shown in Table 2. Despite the connection between the
problem of visual complexity and other problems in computer vision,
there exists a gap between these topics. To overcome this gap, we
have randomly sampled images from commonly-used datasets with the
following categories:

Advertisement: 200 images from the Advertisement dataset (Hus-
sain et al., 2017). Visual impression of advertisement plays a crucial
role in economical competitions (Pilelienė and Grigaliūnaitė, 2018).
This category is selected in order to give ad designers insight into what
factors impact the perceived complexity of an advertisement.

Objects: 200 images from the MSCOCO dataset (Lin et al., 2014).
The purpose of this category is to understand how a human perceives
the visual complexity of various objects and combination of objects.
The number of objects is one of the leading factors contributing to the
visual complexity of an image. This category can help researchers study
the impact of characteristics of objects as well as the number of objects
and their interaction with each other on visual complexity.

Scene: 200 images from the Places2 dataset (Zhou et al., 2017). The
purpose of this category is to understand how humans perceive visual
complexity of various scenes. It may facilitate the study of the roles of
the image foreground and background in visual complexity analysis.

Interior Design: We have collected 100 interior design images from
the IKEA website (IKEA, 0000). This category is specifically selected
to provide insight into how humans perceive the visual complexity of
indoor spaces at home such as bedroom, living room, dining room,
kitchen, and bathroom. Interior designers may use visual complexity
analysis to understand how to design appealing interior spaces.

Visualization and Infographics: 200 images from the MASSVIS
dataset (Borkin et al., 2013). The category consists of charts, graphs,
texts, and tables. Understanding the impact of visual elements as well
as their composition may lead to an understanding of the cognitive and
perceptual processing of a visualization, which can greatly influence
the memorability, recognition, and comprehension of these designs.

Art: 420 Artistic images from the PeopleArt dataset (Westlake
et al.). This category consists of 10 images from each of the 42 cate-
gories of art styles and movements (e.g., Naturalism, Cubism, Socialist
Realism, Impressionism, and Suprematism). Since the aesthetic beauty
of an artistic image is directly influenced by the level of its visual
complexity (Eysenck, 1941; Reinecke et al., 2013), understanding the
visual complexity of an artistic image can help artists to create more
engaging artworks.

Suprematism: 100 images from the Suprematism category in the
PeopleArt dataset for the analysis of geometric abstract art. The Supre-
matism category conveys various geometric shapes and objects in
abstract form and thus presents a different challenge as it contains types
of images that we do not commonly see. This category enables studying
the impact of various shapes, geometric objects, and composition on the
perception of visual complexity.
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Table 2
Sample images of the Savoias dataset with increased visual complexity from left to right in each row.

4.2. Data annotation using pairwise comparisons

In order to obtain absolute ranking scores for an attribute of an
image, in our case, visual complexity, one approach would be to ask
users to assign a score to each image, where the score represents the
ranking of the image relative to all other images. However, it has been
shown that most people can only evaluate 5 to 9 options at a time. In

addition, bias in the rating scale is a common problem in this type of
establishing ground truth (Miller, 1956).

The use of pairwise comparison and conversion of the pairwise
ranking to global ranking is a better alternative (Arrow, 1950; David,
1963; Kendall and Smith, 1940). Pairwise comparison is a relative
measure that helps reduce bias from the rating scale. It is also invariant
under monotone transformation of the rating values and depends only

7
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Fig. 4. Screenshot of one of the pairwise comparisons shown to Figure-Eight
crowdsourcing platform contributors for the objects category.

on the degree of relative difference between one option over the other
in the pair (Gleich and Lim).

Note that, for example, for a set of 𝑛 = 200 images, including all
of the pairs would result in

(𝑛
2

)

= 19,900 comparisons. However, it
is shown that for the pairwise comparisons, not all of the pairs are
required in order to obtain the final global ranking, and information
about a small fraction of the pairs, 𝓁 ≪

(𝑛
2

)

, is adequate (Chang
et al., 2016). In many practical applications with partially observed
measurements or budget constraints (e.g. (Kim et al., 2017), it is
possible to use matrix completion methods in order to complement the
results (Candès and Recht, 2009; Gleich and Lim).

In this work, we follow the pairwise comparison approach. Our
algorithm is iterative and selects two images randomly from the set
of images in a particular category in each step. Images that have
been selected in previous steps are less probable to be chosen in
subsequent steps. The algorithm terminates once a target number of
comparisons is reached. We decided on different target numbers for
different categories, assuming that the visual complexity of images in
some categories is easier to evaluate by human judgment than in others.
For the categories scenes, advertisement, visualization, and objects we
decided to run our algorithm until 𝓁 = 4, 000 pairs are found, which
results in 40 comparisons per image, on average, given that these
categories have 𝑛 = 200 images each. For the interior design category,
we ran the algorithm until 𝓁 = 2, 000 pairs are found, also resulting
in 40 comparisons per image, on average. For the art category, we
obtain 𝓁 = 14,700 pairs, which results in 70 comparisons per image,
on average. Finally, for the Suprematism category, we used all possible
𝓁 =

(𝑛
2

)

=4,950 pairs, which resulted in 99 comparisons per image.
In 4.3.1, we further discuss how we evaluated the accuracy of the
absolute visual complexity scores as a function of 𝓁, the number of
pairwise comparisons between images for the Suprematism category.

4.2.1. Crowdsourcing
To minimize potential bias caused by specific raters, we collected

human judgments via crowdsourcing. Our study involved more than
1,687 contributors who were recruited and paid through the Figure-
Eight crowdsourcing platform.1 Each task was distributed to five con-
tributors. Contributors (also known as crowdworkers in Amazon Me-
chanical Turk) were shown ten pairs of images per page and asked
which of the two images in each pair was visually more complex.
We explained visual complexity by attributes such as cluttered back-
ground, numerosity and variety of objects, people, textures, patterns,
and shapes. We used a forced-choice methodology, in which the con-
tributors are supposed to select either image A or image B (Fig. 4). In

1 https://www.figure-eight.com

the case of similar complexity, contributors were requested to select
intuitively which image they considered more visually complex.

The study contributors were selected from a pool of ‘‘level-3 contrib-
utors’’ who had produced accurate answers in previous work (level 3
is the highest level of expertise on the Figure-Eight crowdsourcing
platform). Contributors were not restricted by their locality. Each con-
tributor was shown 10 pairwise comparison tasks per page. For each
page, a contributor was paid $0.10. We did not allow any contributor
to perform more than 300 tasks, but did not select a lower bound on
the number of tasks.

Test questions, geared towards quality control, were distributed to
contributors randomly throughout the entire time they performed the
comparison tasks. While we paid all comparison tasks, we only kept
the comparison labels provided by the contributors who maintained a
passing score of 90% or above on test questions.

4.2.2. Conversion of pairwise scores to absolute scores
After we collected the information about which image, among a

pair, is considered more complex, we needed to convert this pairwise
score into an absolute visual complexity score. In order to convert
pairwise ranking of images to global ranking, we applied two separate
approaches, namely the Bradley–Terry method (Bradley and Terry,
1952) and matrix completion (Candès and Recht, 2009), as described
below.

We denote the pairwise comparison matrix as a count matrix 𝑆 =
{𝑠𝑖,𝑗}, where 𝑠𝑖,𝑗 is the ratio of the number of times that the contributors
have selected image 𝑖 as more visually complex compared to image 𝑗
over the total number of times that images 𝑖 and 𝑗 have been compared.
Thus, 𝑠𝑖,𝑗 + 𝑠𝑗,𝑖 = 1. The problem here is to find the absolute score 𝑐𝑖 of
image 𝑖.

The Bradley–Terry method (Bradley and Terry, 1952) describes
the probability of choosing image 𝐼𝑖 over image 𝐼𝑗 as a Sigmoid
function of the score difference between the two images,

𝑃 (𝐼𝑖 > 𝐼𝑗 ) = 𝐹 (𝛥𝑖,𝑗 ) =
𝑒𝛥𝑖,𝑗

1 + 𝑒𝛥𝑖,𝑗
, (3)

where 𝛥𝑖,𝑗 = 𝑐𝑖 − 𝑐𝑗 . The score parameter 𝑐 can be estimated by solving
a maximum a posteriori (MAP) problem, i.e., maximizing

log𝑃𝑟(𝑆| 𝑐) = 𝛴𝑖,𝑗𝑠𝑖,𝑗𝐹 (𝛥𝑖,𝑗 ), (4)

where the prior is a uniform distribution. This optimization problem
can be solved using gradient descent (Chang et al., 2016).

The Matrix Completion method assumes, if 𝑠𝑖,𝑗 is greater than 0.5
(image 𝑖 is more visually complex than image 𝑗), and 𝑠𝑗,𝑘 is greater than
0.5, and the pairwise comparison between image 𝑖 and 𝑘 is missing, by
using image 𝑗 as a link, we can infer that image 𝑠𝑖,𝑘 is also greater than
0.5. Now we can create matrix �̂� by filling the missing elements of
matrix 𝑆:

�̂�𝑖,𝑘 =

⎧

⎪

⎨

⎪

⎩

𝑠𝑖,𝑘 if 𝑠𝑖,𝑘 ∈ 𝑆
1
𝑚𝛴

𝑚
𝑗=1

𝑠𝑖,𝑗+𝑠𝑗,𝑘
2 else if 𝑠𝑖,𝑗 ∈ 𝑆, 𝑠𝑗,𝑘 ∈ 𝑆

and 𝑠𝑖,𝑗 > 0.5, 𝑠𝑗,𝑘 > 0.5

(5)

where 𝑚 is the number of existing pairs of 𝑠𝑖,𝑗 and 𝑠𝑗,𝑘 in the count
matrix 𝑆. For matrix completion, note the following points:

• We only consider 𝑠𝑖,𝑗 and 𝑠𝑗,𝑘 ∈ 𝑆 if they are greater than 0.5.
Therefore, if 𝑠𝑖,𝑗 > 0.5 and 𝑠𝑗,𝑘 < 0.5, we will not make any
judgments about the missing pair 𝑠𝑖,𝑘.

• For those pairs for which we have the result in one direction, we
can fill the matrix in the other direction by using �̂�𝑘,𝑖 = 1 − �̂�𝑖,𝑘.

• For the rare case that a pair is not connected in either directions,
we use �̂�𝑖,𝑘 = �̂�𝑘,𝑖 = 0.5.

When the count matrix �̂� is completed, the absolute score for each
image is the mean of the pairwise scores for that image:

𝑐𝑖 =
1
𝑛

𝑛
∑

𝑗=1, �̂�∈�̂�

�̂�𝑖,𝑗 . (6)
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Fig. 5. For the category Suprematism, the correlation between 𝐶𝓁 and 𝐶𝑓 is shown as
a function of 𝓁. High correlations can be achieved for some values of 𝓁 ≪

(𝑛
2

)

.

4.3. Verifying the method to obtain ground truth

To confirm the consistency of the two aforementioned methods to
convert the pairwise matrix to absolute final scores, we evaluated the
correlation between the global ranking scores obtained by the two
methods. We obtained correlations higher than 0.98 between the two
methods for all seven image categories. It is therefore appropriate to use
the ground-truth values of only one method (we use the Bradley–Terry
method) in our subsequent analysis below.

4.3.1. Validity of partial matrix versus full matrix comparison
Here, we evaluate the accuracy of the absolute visual complexity

scores as a function of 𝓁, the number of pairwise comparisons between
images. Since we have the full comparison matrix for the Suprematism
category, we can perform such an analysis. Recall the notations from
Section 4.2.2, where 𝑆 = {𝑠𝑖,𝑗} is the count matrix for the pairwise
comparisons and 𝐶 = {𝑐𝑖} is the list of absolute visual complexity
scores, i.e., the output of the Bradley–Terry algorithm. We define 𝑆𝓁
and 𝐶𝓁 as the count matrix and absolute scores, respectively, where 𝓁
number of pairs have been selected by crowdsourcing. The full count
matrix and the resulting absolute scores are denoted by 𝑆𝑓 and 𝐶𝑓 ,
respectively, with 𝓁 =

(𝑛
2

)

.
The correlation between the visual complexity scores based on

𝐶𝓁 and 𝐶𝑓 for 𝓁 in the range of [100 − 4950] is shown in Fig. 5,
which highlights the trade-off between the accuracy and the number of
pairwise comparisons. For example, if only 2,000 pairs had been chosen
to define 𝑆𝓁 for the Suprematism category, the result would be close to
the result of a full comparison, since the correlation between 𝐶𝑙 and 𝐶𝑓
is 0.96. Given this result for the Suprematism category, we hypothesize
that high correlations can also be achieved for the other six categories
if 𝓁 is selected to be much smaller than

(𝑛
2

)

.

4.3.2. Distribution of the ground-truth scores
Initial analysis of the distribution of the absolute scores showed that

the absolute scores are mostly distributed around zero. To mitigate this
issue, we rescaled the range of pairwise scores, so that they are in the
interval of [0.33, 0.66] instead of [0, 1], while still maintaining 0.5 as
the score that represents equal visual complexity of an image pair. This
adjustment is basically adding a temperature parameter to the sigmoid
in Eq. (3).

Visual inspection of Fig. 6, which presents the distribution of scores
for the seven categories, shows that the rescaling step was successful —
each histogram is well distributed among the range of visual complexity
numbers.

5. Experiments on unsupervised model

5.1. Datasets

In order to evaluate the performance of our proposed methodology,
we compared our results on SAVOIAS, as well as two other datasets,

namely RSIVL (Corchs et al., 2014) and abstract patterns (Gartus and
Leder, 2013). A few sample images of these datasets are shown in
Figs. 7–9.

5.1.1. RSIVL Dataset
To analyze the performance of our proposed metric on the real

world scenes, we used two datasets provided by Corchs et al. (2014):
RS1 contains 49 images of the RSIVL dataset (RSIVL, 2016), and RS2
with 29 images of the LIVE dataset (H. et al., 2006; Wang et al., 2004;
Sheikh et al., 2006) and 20 of the IVL dataset (Corchs et al., 2014;
IVL, 2014). Images were selected to have a wide variety of low-level
and high-level features, i.e., colors, spatial frequencies, faces, buildings,
outdoor scenes, animals, close-up or wide-angle shots, and various fore-
ground and background configurations. Psychophysical experiments
involving up to 39 participants were conducted by Corchs et al. (2014)
to obtain human judgments of the visual complexity of these images.
Sample images of the RS1 dataset along with their feature maps and
human-curated and network-computed visual complexity scores are
presented in Fig. 8.

5.1.2. Abstract patterns
This dataset consists of 912 abstract patterns selected from an

extended set of patterns that were used by Gartus and Leder (2013). The
patterns are designed by placing 36 to 44 black triangular elements in
an 8 × 8 rectangular grid on a white background according to several
criteria like number of objects and symmetry axes and thus are used
to study the impact of these criteria with the visual complexity. Some
examples of this dataset are shown in Fig. 9.

5.2. Baselines

We compare our results to the results reported by the state-of-the-art
unsupervised methods. Note that while the UAE method is not a single
feature, no further supervision is applied and the features are simply
averaged. Thus, our method is still unsupervised. For the SAVOIAS
dataset we compare our results with edge density, number of regions,
compression ratio, feature congestion, and subband entropy algorithms.
For the RSIVL dataset, we compare our results to those of three baseline
methods (edge density, number of regions, and compression ratio). For
the abstract patterns, we compare our results with mirror symmetry and
RMSGIF metrics, previously used for the analysis of visual complexity
on abstract patterns (Gartus and Leder, 2017). The RMSGIF metric is
computed by first applying a root mean square contrast edge detection
on an image and then measuring the compression ratio when the GIF
file compression is applied on the edge detected image.

5.3. Results: UAE method

We selected a high-performing intermediate layer of each archi-
tecture as the best candidate for quantifying visual complexity and
the Pearson correlation coefficient between this layer and the human-
curated ground truth is used to evaluate the performance of the men-
tioned methods.

Through our psychology literature review, we learned that humans
can perceive visual complexity of images better in comparison to other
images, hence the scores assigned to images are relative to each other.
Therefore, in designing our dataset and obtaining the ground truth
labels, we performed pairwise comparison between the images. The
same is true for our prediction algorithm. Our algorithm provides
relative visual complexity scores with respect to the other images.
These scores do change when a different depth layer in a network
is considered. Note though, if the output numbers are not between
[0,100], it does not matter because we use the Pearson correlation
coefficient (which is normalized) to compute the correlation between
the extracted values and the ground truth.

The correlations between the methods (baseline and ours) and the
ground-truth complexity labels for SAVOIAS are shown in Table 3
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Fig. 6. Distribution of absolute visual complexity scores per category for the SAVOIAS dataset.

Fig. 7. Sample images of the Savoias dataset and their corresponding energy maps from the fourth max-pooling layer in the VGG-16 architecture trained for the scene recognition
task. The images from top left to bottom right belong to datasets Advertisement, Places2, MASSVIS (Visualization and Infographics), MSCOCO, IKEA, and art respectively. Note
that the last three images belong to the art dataset where the last sample is from the Suprematism category.
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Fig. 8. Sample images of the RS1 dataset (top), energy maps (bottom). The energy maps correspond to the activations of the fourth max-pooling layer in the VGG-16 architecture
trained for the scene recognition task. The order of image correspond to increasing visual complexity from left to right.

Fig. 9. Sample images of the abstract patterns dataset (top), energy maps (bottom). The energy maps correspond to the activations of the fourth max-pooling layer in the VGG-16
architecture trained for the scene recognition task. The images are in the increasing order of visual complexity from left to right.

Table 3
Results and comparison to prior work: correlation between human-curated and computed visual complexity scores based on UAE for the Savoias dataset. Our results outperforms all
other methods by a significant margin and thus can be used for variety of image categories. The categories Ad, Sup and Vis refer to Advertisement, Suprematism and Visualization
and Info graphics respectively.

Model Ad. Art Int. Obj. Scenes Sup. Vis.

Edge Density (Rosenholtz et al., 2007) 0.54 0.48 0.63 0.27 0.16 0.18 0.57
Compression Ratio (Rosenholtz et al., 2007) 0.56 0.51 0.72 0.16 0.30 0.60 0.55
Number of Regions (Comaniciu and Meer, 2002) 0.41 0.65 0.69 0.29 0.57 0.84 0.38
Feature Congestion (FC) (Rosenholtz et al., 2007) 0.56 0.22 0.63 0.30 0.42 0.48 0.52
Subband Entropy (SE) (Rosenholtz et al., 2007) 0.54 0.33 0.31 0.10 0.16 0.39 0.61

VGG16 Scene Recognition [Ours] 𝟎.𝟕𝟑 0.50 0.82 𝟎.𝟔𝟕 0.76 0.84 𝟎.𝟕𝟏
VGG16 Object Classification [Ours] 0.71 0.59 𝟎.𝟖𝟑 0.64 𝟎.𝟕𝟕 𝟎.𝟖𝟓 0.70
Inception-v4 Object Classification [Ours] 0.61 𝟎.𝟔𝟖 0.81 0.60 0.74 0.84 0.67
ResNet-v2-152 Object Classification [Ours] 0.71 0.41 0.71 0.60 0.71 0.73 0.68
DenseNet Object Classification [Ours] 0.58 0.26 0.75 0.48 0.66 0.71 0.66
MobileNet Object Classification [Ours] 0.47 0.48 0.78 0.53 0.65 0.82 0.64
EfficientNet-B7 Object Classification [Ours] 0.54 0.46 0.69 0.39 0.60 0.77 0.40

for all seven categories. For all the architectures shown in this table,

correlations exist between our proposed unsupervised activation energy

method and the ground truth. This confirms our hypothesis that the

intermediate layers of deep convolutional networks carry information

regarding the visual complexity, and that our proposed UAE method

outperforms all the previous work.

The VGG architecture is known to be a useful architecture for
vision tasks that are closer to human visual perception such as super-
resolution Bruna et al. (2015), Johnson et al. (2016) and Ledig et al.
(2017). This architecture seem to be able to extract features that are
related to human perception of images. Our results confirms such
a quality in the VGG architecture, since in most cases, the highest
correlation between our metric and human-curated ground truth is
obtained from the VGG architecture.
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Table 4
Correlation between human-curated and computed visual complexity scores based on
UAE for RSIVL dataset.

Model RS1 RS2

Edge Density (Rosenholtz et al., 2007) 0.65 0.66
Compression Ratio (Rosenholtz et al., 2007) 0.67 0.67
Number of Regions (Comaniciu and Meer, 2002) 0.74 0.69

VGG-16 Scene Recognition [Ours] 0.79 0.72
VGG-16 Object Classification [Ours] 0.76 0.70
Inception Object Classification [Ours] 0.76 0.73
ResNet Object Classification [Ours] 0.75 0.70
DenseNet Object Classification [Ours] 0.54 0.62
MobileNet Object Classification [Ours] 0.62 0.73
EfficientNet-B7 Object Classification [Ours] 0.43 0.60

Table 5
Correlation between human-curated and computed visual complexity scores based on
UAE for the abstract patterns dataset.

Model

RMSGIF (Gartus and Leder, 2017) 0.63
Mirror Symmetry (MS) (Bauerly and Liu, 2006) 0.58

VGG-16 Scene recognition [Ours] 0.58
VGG-16 Object Classification [Ours] 0.60
Inception Object Classification [Ours] 0.65
ResNet Object Classification [Ours] 0.50
DenseNet Object Classification [Ours] 0.49
MobileNet Object Classification [Ours] 0.50
EfficientNet-B7 Object Classification [Ours] 0.56

In case of the object category (from MSCOCO), there exists a margin
of 0.37 between our method and the second best performing method;
in which our model (VGG-16 architecture trained for the scene recogni-
tion task) has a correlation of 0.67 between our method and the ground
truth, while the second best performing method is feature congestion
and results in a correlation of 0.30. Although our neural networks are
trained based on object or scene classification, the UAE method applied
to selected layer can successfully predict the visual complexity of the
images in all other categories as well.

For both RS1 and RS2, the average correlation values we measured
for our method are higher than those reported by prior work for
unsupervised algorithms (0.79 and 0.73, respectively)(see Table 4). In
order to evaluate the performance of our proposed methodology on a
different task than what the neural network has been trained on, we
performed a separate experiment with the abstract patterns. The images
in the abstract patterns dataset are designed to evaluate the impact of
number of shapes and symmetry in quantifying the visual complexity.
Although our model has not been trained specifically to focus on the
number of shapes or symmetry, it can successfully quantify the visual
complexity of the images and outperforms the methods discussed in the
work of Gartus and Leder (2017) as shown in Table 5.

It has been recently proposed that the structure of a generator
network can capture a great deal of low-level image statistics prior
to any learning (Ulyanov et al.). To investigate whether any untrained
classification architecture also carries such information, we compared
our results from the pretrained models for two different tasks of ob-
ject and scene classifications with the untrained model. We noticed
that there exists a small but consistent correlation between all of the
untrained models and the ground truth of visual complexity. This
result can suggest that these architectures may capture such low-level
features. For prediction of visual complexity, however, extraction of
both high-level and low-level features is required. Since the untrained
models fall short on extracting semantic features, they cannot perform
well as the trained models do.

5.4. Discussion

The results of our experiments and the statistically significant supe-
rior performance of our unsupervised activation energy method confirm

Table 6
Crowdplatform contributor feedback.

Sc
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Ar
t
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p.

Av
g.

Overall satisfaction 4.2 4.3 4.1 4.5 4.1 4.3 3.8 4.2
Ease of job 4.1 4 4 4.3 3.9 4.1 3.6 4

Fig. 10. Description of the Supervised Activation Energy (SAE) Method.

the applicability and advantage of our method compared to previous
work. The results also highlight that our method can be generalized to
various types of images with no supervision.

Comparing the correlations between visual complexity scores based
on crowdsourcing platform contributors and the state-of-the-art algo-
rithms, we observe that ‘Suprematism,’ which is the most challenging
category for the contributors (Table 6), had the highest correlation
with the number of regions method. On the other hand, contributors
found the ‘Object’ category to be the least challenging category, while
all the previous work performed poorly on this category (the highest
correlation is only 0.3). Based on this observation, we postulate that
the previous work is more capable of making decisions based on
features such as geometric shapes, textures, and patterns, found in the
Suprematism category, than image features such as objects and people,
which are easier for human contributors to judge.

Our results show that our proposed unsupervised activation energy
method is not only capable of quantifying the low-level features and
simple shapes, but can also successfully focus on the features of an im-
age that human observers use when they evaluate the visual complexity
of an image.

6. Supervised versus unsupervised methods

In this section, we are interested in exploring whether we can im-
prove the interpretation of the feature maps in the fourth max-pooling
layer by training a supervised model and learning the contribution of
the activated neurons. In addition, we examine how generalized these
supervised models are in predicting the visual complexity of images
from a different image category.

In the Unsupervised Activation Energy (UAE) method, we take
average of all the activated neurons on the fourth max-pooling layer.
Now we define the Supervised Activation Energy (SAE) method
where models are trained to learn the weights of the activated neurons
instead of taking the average (see Fig. 10).

6.1. Approach

We use linear regression to train our supervised model. We first
resize the feature maps to size 14 × 14 × 512. Thus the total number
of features for each image would be 100,352. Since the number of
features to train the regression model are high compared to the number
of images (100–400 images depending on the category), we need to
make sure that the regression models do not overfit. We regularize the
models using the Ridge regression model. In Ridge regression, the least
square loss function is augmented by a second term as shown in Eq. (7).
While the least squares loss minimizes the sum of squared residuals, the
second term penalizes the size of parameter estimates, also called the
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Table 7
Results of the supervised models (SAE) in terms of the correlation between the supervised model and the human-curated ground truth, trained on all the activated features of the
feature map, averaged across the channels (spatial features), averaged across image dimension (depth features), and compared against the Unsupervised Activation Energy (UAE)
method, used here as the baseline.

Model Ad. Art Int. Obj. Scenes Sup. Vis.

All features 0.74 0.84 0.82 0.77 0.84 0.90 0.74
Spatial features 0.69 0.63 0.83 0.63 0.78 0.83 0.67
Depth features 0.75 0.86 0.86 0.80 0.85 0.90 0.72

Unsupervised activation energy 0.70 0.60 0.79 0.64 0.76 0.81 0.66

Table 8
Comparison of the performance of the SAE models when trained on the same category as being tested versus when trained on the art category. The results are also compared
with a baseline (UAE model). For the advertisement and visualization categories, the result of the SAE model trained on the art category is lower than the UAE method which
suggests that the type of images in the advertisement and visualization categories are different from the images in the art category. This may be attributed to the fact that there
exists text in these two categories, but not in the art category.

Model Ad. Art Int. Obj. Scenes Sup. Vis.

Same Category as Test 0.74 - 0.82 0.77 0.84 0.90 0.74
Art Category 0.68 - 0.80 0.70 0.79 0.87 0.62

Activation Energy (Unsupervised) 0.70 - 0.79 0.64 0.76 0.81 0.66

vector of the coefficients, in order to shrink them towards zero. The
loss function is

𝐿𝑟𝑖𝑑𝑔𝑒(𝛽) = ‖𝑦 −𝑋𝛽‖22 + 𝜆‖𝛽‖22, (7)

where 𝛽 is the vector of the coefficients assigned to each feature that
needs to be estimated, X is the input features, and y is the ground
truth labels. The first term of the loss function is the least squares loss
while the second one is the penalty term for high values in the squared
magnitude of the 𝛽 vector.

In order to analyze the importance of spatial information in the
energy maps and the information activated in different channels of the
convolutional neural network, we have performed further analysis by
taking averages spatially as well as across the channels. The following
features are used separately to train the regression models:

𝐹𝑎𝑙𝑙[𝑖, 𝑗, 𝑘] = 𝐹4[𝑖, 𝑗, 𝑘] (8)

𝐹𝑠𝑝𝑎𝑡𝑖𝑎𝑙[𝑖, 𝑗] =
1
𝑑

𝑑
∑

𝑘=1
𝐹4[𝑖, 𝑗, 𝑘] (9)

𝐹𝑑𝑒𝑝𝑡ℎ[𝑘] =
1

𝑚 × 𝑛

𝑚,𝑛
∑

𝑖,𝑗=1
𝐹4[𝑖, 𝑗, 𝑘], (10)

where 𝐹4 represents the feature maps of the fourth max-pooling layer of
the deep neural network. If the shape of 𝐹4 is indicated as 𝑚×𝑛×𝑑, then
𝑚 = 14, 𝑛 = 14 and 𝑑 = 512; thus the size of the spatial features and
the depth features are 14 × 14 = 196 and 512, respectively. Note that
the formulas in Eqs. (1) and (9) are the same with 𝐹𝑙 = 𝐹4, i.e., the
feature maps of the fourth max-pooling layer. The features for training
the models are flattened into a one-dimensional vector.

6.2. Results: UAE versus SAE

Here we present the results of our SAE models. We report the
correlation between model output and the ground truth in Table 7.
The first three rows are the results of regression models trained on the
features as described in Eqs. (8), (9), and (10), while the last one is the
UAE method, used here as the baseline.

The value of the regularization parameter used for the Ridge re-
gression is 𝜆 = 0.01, chosen by cross validation. The feature maps
are obtained from the VGG architecture, pre-trained for the object
classification task. Similar results are obtained by using the other
network architectures and tasks (omitted for the sake of brevity).

As the results in Table 7 suggest, we can obtain higher correlations
by training a supervised model on the feature maps. The models

trained on all features and the depth features show higher improvement
compared to the spatial features. The negligible improvement of the
regression model trained on the spatial features compared to the energy
metric with equal weights for all the spatial features suggests that the
spatial location of clutter does not significantly impact the judgment
of the human observers. On the other hand, our results show that the
contribution of various channels of the feature maps can be different,
and setting weights for each channel using supervised methods can
improve the results.

6.3. Discussion

As shown in Table 7, the best results are mostly obtained from the
depth features and not all of the features. This suggests that due to a
high number of features, when all of them are being used for training,
the model may not be able to learn the contribution of different
channels.

As stated earlier, the results are obtained by setting the value of
the regularization parameter to 0.01, which allows the coefficients
of the regression model to have a relatively high value if needed.
Setting the regularization parameter to 1 or, in other words, limit
the distribution of the coefficients to be in a constrained range, the
correlations obtained from the depth features will be closer to the
results of the baseline.

Note that the results of the UAE method reported here may be
slightly different from the ones reported in Table 3. The reason is
that for the analysis presented here, all the images are resized to
14 × 14 × 512 before the calculations for this section. However, no
resizing has been performed for results of Table 3.

6.3.1. How does a model trained on one category perform on other cate-
gories?

In order to evaluate the generalizability of our supervised models,
we have also evaluated the performance of a regression model when it
was trained for one category and tested on the rest of the categories.

Three different cases are compared in Table 8. The first row rep-
resents the results when the models used for training and testing are
from the same category, e.g., trained on advertisement and tested on
advertisement. The second row represents the results of the regression
model trained on the art category, while tested on all other categories.
These two cases are then compared to the case in the third row, which
is the unsupervised model, i.e., the model has no information about any
of the categories.

For the categories of Interior design, Objects, Scenes and Supre-
matism, the correlations reported on the second row (trained on art
category) are less than the first row (same category as test), but they are
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Table 9
Some examples of the SUN database (Xiao et al.) used in the FIGRIM dataset (Bylinskii et al., 2015) for evaluation of memorability in images when target images were among
other images of the same context. From left to right, the ground truth memorability score obtained in the FIGRIM dataset increases.

higher than the results of the third row (unsupervised energy metric).
This states that although the model trained on the art category may not
be as accurate the models trained on the same category as being tested,
it has learnt a set of coefficients that are applicable in other categories.
For the two categories of Advertisement and Visualizations, however,
the correlations reported on the third row are even lower then the
unsupervised energy metric. This lower performance can be attributed
to the difference in the nature of these two categories. We hypothesize
that since the Advertisement and Visualizations contain text, the model
trained on the art category cannot predict the visual complexity of the
images in these two categories very accurately.

7. Application: Visual complexity affects image memorability

Memorability of an image can be defined by metrics corresponding
to the probability of an image being remembered by a person. Various
efforts have been made to quantify how memorable an image is and
what the contributing factors are (Bylinskii et al., 2015, 2017; Perera
et al., 2019). Memorability has been previously studied for different
visual stimulus sets including faces (Bainbridge et al., 2013; Khosla
et al., 2013), scenes (Isola et al., 2011a; Khosla et al., 2015; Bylinskii
et al., 2015; Khosla et al., 2012), and graphs and visualizations (Borkin
et al., 2016, 2013; Bylinskii et al., 2017) to understand the features
driving higher memorability.

7.1. Approach

It has been demonstrated before that some scene categories are
intrinsically more memorable (Bylinskii et al., 2015). In this work, we
examine whether there exists a correlation between image complexity
and image memorability. We choose the feature maps of Pool 4 (the
fourth max-pooling layer) in the VGG-16 architecture trained for the
scene recognition task as a means to quantify visual complexity of
images.

There are numerous factors that contribute to the memorability
score of an image. Thus, in order to find the underlying correlation
between the visual complexity and memorability, we need to minimize
the impact of other factors on the memorability score. In other words,
we want to distinguish between context-specific factors versus factors
that are specific to one particular image and not the context. We
propose to do so by focusing on intra-class and inter-class analyses of
image categories, as such analyses mitigate the effect of undesirable
factors.

To illustrate our approach, we provide the following example. An
image of a simple garden with a lawn and fence is not as memorable
as an image of a garden with lawn and fence that also includes
roses, perennials, trees, etc. However, the simple garden would become
more memorable with an out-of-place purple teddy bear lying on its
lawn than the second unaltered garden. To analyze the connection
between visual complexity and memorability in typical garden images

(to separate the effect of a purple teddy bear), we do an inter-class
analysis.

In order to perform inter-class analysis, we need to first investigate
whether some scene categories are inherently more visually complex,
and if such a condition holds, we can examine whether there exists
a correlation between image complexity and image memorability. We
start by studying how visual complexity varies for different scene
categories and then present how visual complexity and memorability
are related.

7.2. Dataset for memorability analysis

For our experiments, we used the FIGRIM dataset introduced by
Bylinskii et al. (2015). The FIGRIM dataset consists of 21 different
indoor and outdoor scene categories (from the SUN database (Xiao
et al.) and thus satisfies the requirement for the inter-class analysis.

In order to collect memorability scores, Bylinskii et al. followed
the protocol of Isola et al. (2011b), by setting up memory games
on Amazon Mechanical Turk (AMT) and showing target images twice
among filler images. The number of hits, i.e., participants recognized an
image was repeated, misses, false alarms, and false rejections were then
reported. In each scene category, a quarter of the images (a minimum
of 56 and maximum of 157 images from a scene category) are randomly
selected as target images and the rest are used as filler images. In our
experiments, we use the metric Hit Rate (HR) for an image I, as defined
by Bylinskii et al. for target images shown among image fillers within
the image context (AMT1) and across the image context (AMT2):

𝐻𝑅(𝐼) =
ℎ𝑖𝑡𝑠(𝐼)

ℎ𝑖𝑡𝑠(𝐼) + 𝑚𝑖𝑠𝑠𝑒𝑠(𝐼)
× 100%. (11)

Example images and their memorability score are shown in Table Ta-
ble 9.

7.3. Results: Correlation between visual complexity predictions and image
memorability

In order to evaluate the correlation between image complexity
and its memorability, we first need to demonstrate that the visual
complexity of images within the same category is consistent and verify
that visual complexity values within a scene category do not fluctuate
widely. In order to evaluate such consistency within scene categories,
we followed the approach suggested by Bylinskii et al. (2015). The set
of images of each scene category are randomly split into two subsets
and the average of the energy for each subset is computed. The Pearson
correlation coefficient between the two subsets is then computed rep-
resenting the consistency of visual complexity among scene categories.
The same experiment was run multiple times and similar results were
obtained. On average, the correlation between the two subsets was
0.97, demonstrating significant consistency among different members
of the same scene category.
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Fig. 11. Scatter plot of the visual complexity and memorability scores averaged for each of 21 scene categories in the AMT1 dataset. The visual complexity scores are computer
using the UAE method. The Pearson correlation coefficient excluding one outlier is 0.65, which confirms that classes with higher visual complexity are more memorable.

Establishing the consistency of visual complexity values within
classes enables us to evaluate the average of each class instead of the
individual images. Next, we explore whether there exists a correlation
between the predicted visual complexity values and the memorability
scores (HRs). To evaluate our hypothesis for each of 21 categories,
we first compute the average of the visual complexity score and the
average of the memorability score over images in the same category.
Then, using these 21 pairs, we calculate the correlation between the
visual complexity and the memorability vectors and perform inter-class
analysis.

A scatter plot of the average visual complexity score and average
memorability score for each category is shown in Fig. 11. The correla-
tion between the two attributes is 0.35. Excluding the class ‘‘cockpit’’ as
an outlier due to the high similarity of images in this class, the correla-
tion jumps to 0.65. The positive correlation between visual complexity
and memorability suggests that, in reference to AMT1, images that
are more visually complex are more memorable and therefore visual
complexity can be used as a factor in memorability analysis.

8. Conclusion

In this paper, we proposed the unsupervised use of information
activated by filters in the intermediate convolutional layers of a deep
neural network. We showed that the activation energy of these layers
can successfully quantify the visual complexity of an image. We also
provided evidence that visual complexity information can be extracted
for various network architectures and tasks (scene recognition and
object classification). In addition, to investigate the applicability of our
method to various image understanding tasks, we introduced Savoias,
a new dataset for the analysis of visual complexity in images. Savoias
compromises of more than 1,400 images, which belong to seven di-
verse categories. The ground-truth complexity values were obtained
by processing the judgments of 1,687 crowdplatform contributors who
compared the visual complexity of more than 37,000 pairs of images.
In our experiment, we showed that our Unsupervised Activation Energy
method can outperform all the previous unsupervised methods in quan-
tifying visual complexity. Furthermore, we show that the performance
can be improved by learning the weights of the activated neurons.

Our work may leverage research in other areas of computer vi-
sion, such as segmentation, visual search, image captioning, and visual
question answering, for example by determining the visually complex
regions of the image or estimating the difficulty level of the task based
on visual complexity of the image. Furthermore, our proposed dataset

facilitates research in the field of psychophysics and cognitive science
to find the underlying factors in the stimulus that affect the perception
of visual complexity in humans. Lastly, our proposed method enables
artists, Web and graphic designers, interior designers, and advertisers
to estimate the level of visual complexity of their work in order to
maximize the quality of their design and the impact of their work on
their audience.
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Pilelienė, L., Grigaliūnaitė, V., 2018. Effect of visual advertising complexity on
consumers? attention. Economics 3, 489–501.

Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008a. Dimensionality of
visual complexity in computer graphics scenes. In: Proceedings of Human Vision
and Electronic Imaging XIII Conference, p. 68060E.

Ramanarayanan, G., Bala, K., Ferwerda, J.A., Walter, B., 2008b. Dimensionality of
visual complexity in computer graphics scenes. In: Proceedings of the Human Vision
and Electronic Imaging XIII, p. 68060E.

Razavian, A.S., Sullivan, J., Carlsson, S., Maki, A., 2016. Visual instance retrieval with
deep convolutional networks. ITE Transa. Media Technol. Appl. 4, 251–258.

Reinecke, K., Yeh, T., Miratrix, L., Mardiko, R., Zhao, Y., Liu, J., Gajos, K.Z., 2013.
Predicting users’ first impressions of website aesthetics with a quantification
of perceived visual complexity and colorfulness. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, pp. 2049–2058.

Rosenholtz, R., Li, Y., Nakano, L., 2007. Measuring visual clutter. J. Vis. 7 (17).
RSIVL, 2016. Imaging and Vision Laboratory, Department of Informatics, Systems

and Communication. university of milano-bicocca, http://www.ivl.disco.unimib.it/
activities/complexity-perception-in-images; 2016..

Sameki, M., Lai, S., Mays, K.K., Guo, L., Ishwar, P., Betke, M., 2019. BUOCA:
budget-optimized crowd worker allocation. Comput. Res. Repos. abs/1901.06237.

Schnur, S., Bektaş, K., Çöltekin, A., 2018. Measured and perceived visual complexity:
A comparative study among three online map providers. Cartogr. Geogr. Inf. Sci.
45, 238–254.

Sheikh, H.R., Sabir, M.F., Bovik, A.C., 2006. A statistical evaluation of recent full
reference image quality assessment algorithms. IEEE Trans. Image Process. 15,
3440–3451.

Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:
1312.6034.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv:1409.1556.

Snodgrass, J.G., Vanderwart, M., 1980. A standardized set of 260 pictures: norms
for name agreement, image agreement, familiarity, and visual complexity. J. Exp.
Psychol.: Hum. Learn. Memory 6, 174.

Sohn, S., Seegebarth, B., Moritz, M., 2017. The impact of perceived visual complexity
of mobile online shops on user’s satisfaction. Psychol. Mark. 34, 195–214.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., 2017. Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-First AAAI Conference
on Artificial Intelligence, p. 12.

Tan, M., Le, Q.V., 2019. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946.

Toderici, G., Vincent, D., Johnston, N., Ji. Hwang, S., Minnen, D., Shor, J., Covell, M.,
2017. Full resolution image compression with recurrent neural networks. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5306–5314.

Tzeng, E., Hoffman, J., Darrell, T., Saenko, K., 2015. Simultaneous deep transfer
across domains and tasks. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 4068–4076.

Ulyanov, D., Vedaldi, A., Lempitsky, V., 2018. Deep image prior. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454.

Uricchio, T., Bertini, M., Seidenari, L., Bimbo, A., 2015. Fisher encoded convolutional
bag-of-windows for efficient image retrieval and social image tagging. In: Pro-
ceedings of the IEEE International Conference on Computer Vision Workshops, pp.
9–15.

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004. Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13,
600–612.

Wang, N., Li, S., Gupta, A., Yeung, D.Y., 2015. Transferring rich feature hierarchies for
robust visual tracking. arXiv:1501.04587.

Wang, Z., Simoncelli, E.P., Bovik, A.C., 2003. Multiscale structural similarity for image
quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems
& Computers, 2003, Ieee. pp. 1398–1402.

Westlake, N., Cai, H., Hall, P., 2016. Detecting people in artwork with cnns. In:
European Conference on Computer Vision, pp. 825–841.

Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A., 2010. Sun database: Large-scale
scene recognition from abbey to zoo. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3485–3492.

Yang, F., Choi, W., Lin, Y., 2016. Exploit all the layers: Fast and accurate cnn
object detector with scale dependent pooling and cascaded rejection classifiers. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2129–2137.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features
in deep neural networks?. In: Proceedings of the Advances in Neural Information
Processing Systems, pp. 3320–3328.

Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018. The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 586–595.

Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R., 2016. Unconstrained
salient object detection via proposal subset optimization. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5733–5742.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A., 2017. Places: A 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell..

17

http://arxiv.org/abs/1504.05133
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb74
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb74
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb74
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb75
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb75
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb75
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb75
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb75
http://arxiv.org/abs/1901.11420
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb77
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb77
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb77
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb78
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb78
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb78
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb81
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb81
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb81
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb82
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb83
http://www.ivl.disco.unimib.it/activities/complexity-perception-in-images
http://www.ivl.disco.unimib.it/activities/complexity-perception-in-images
http://www.ivl.disco.unimib.it/activities/complexity-perception-in-images
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb85
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb85
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb85
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb86
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb86
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb86
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb86
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb86
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb87
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb87
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb87
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb87
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb87
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb90
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb90
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb90
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb90
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb90
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb91
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb91
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb91
http://arxiv.org/abs/1905.11946
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb98
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb98
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb98
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb98
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb98
http://arxiv.org/abs/1501.04587
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb107
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb107
http://refhub.elsevier.com/S1077-3142(20)30033-3/sb107

	Visual complexity analysis using deep intermediate-layer features
	Introduction
	Related work
	Visual complexity in other fields
	Algorithms to quantify visual complexity
	Datasets
	Feature extraction from convolutional layers of deep neural network

	Approach
	Unsupervised activation energy (UAE) method
	Utility of different convolutional layers in quantifying visual complexity

	Dataset description
	Image collection
	Data annotation using pairwise comparisons
	Crowdsourcing
	Conversion of pairwise scores to absolute scores

	Verifying the method to obtain ground truth
	Validity of partial matrix versus full matrix comparison
	Distribution of the ground-truth scores


	Experiments on unsupervised model
	Datasets
	RSIVL Dataset
	Abstract patterns

	Baselines
	Results: UAE method
	Discussion

	Supervised versus unsupervised methods
	Approach
	Results: UAE versus SAE
	Discussion
	How does a model trained on one category perform on other categories?


	Application: Visual complexity affects image memorability
	Approach
	Dataset for memorability analysis
	Results: Correlation between visual complexity predictions and image memorability

	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


