
A Survey on Community Mining in Social Networks

M. Jalal∗, A. Doan∗
∗ Department of Computer Science, University of Wisconsin-Madison

{jalal, anhai }@cs.wisc.edu

I. ABSTRACT

Community detection and overlapping community de-
tection has been of significant importance in the last
decade wherein invention and growth of social networks
like Facebook, Twitter, Linkedin, Flickr, etc. has even made
it more crucial to investigate better approaches. Overlapping
community detection has many application as in modern
market analysis and recommendation systems, bioinfor-
matic systems, etc. The main hindrance in analysing social
networks like Facebook is their giant social graphs and
problems like detecting communities and their overlaps have
very large time complexity. Finding overlapping communities
in modern social graphs is an open problem and researchers
have been using many heuristic graph mining and machine
learning algorithms to approach the problem with less
complexity. In this study we survey various community
detection algorithm used in the literature as well as methods
for evaluating them.

Keywords. Community Mining, Community Detection,
Graph Clustering, Spectral Clustering, Data Mining.

II. INTRODUCTION

Social network and social network data analysis are being
pronounced more and more in today’s literature in data mining,
graph mining, machine learning, and data analysis. One of
the prevalent problems is detecting communities and their
overlaps. Communities or cluster are vertices in a graph with
high degree of connectivity between them which stands them
out from the rest of the graph. Some of the community
detection algorithms have used notion of edge-betweenness
for detection of communities as the density of edges between
nodes that belong to a community is greater than density of
edges between nodes that don’t form a community. The main
problem faced with community detection is time complexity of
running conventional methods on giant modern social network
graphs with billions of edges. Some of the researchers have
done their clustering algorithms locally on the social graphs in
order to reduce the complexity of their algorithms. Community
detection algorithms are expected to be scalable considering
the ever-growing social networks. Some of the important
features[1] of the communities are considered to be as follows:

1) Overlapping: communities can overlap in which users
share the same interests and have the same edges in
common between two or more communities.

2) Directed: edges within a community can be directed or
undirected. In terms of social networks, we can consider
all of the edges to be directed.

3) Weighted: edges in the communities can be weighted to
denote that various users have different affiliations and
interaction rate with the community. The more influence
a node brings up to a community, the greater is its edge
weight connecting the node to the community.

4) Multi−dimensional: interactions within a community
can be multi-dimensional, meaning that people can use
various methods to interact with each other by posting,
sharing, liking, commenting, tagging, etc.

5) Incremental: communities and community detection
algorithms are expected to be incremental in which
adding a new node and assigning a community to
it, would just need a local search for the node in
its neighborhood. We definitely dont want to run the
whole algorithm from the beginning just for finding a
community for a newcomer node.

6) Dynamic: communities can be dynamic and evolve
through the time. Because most of giant social networks
are dynamic, many of researchers have proposed the idea
of streaming graph partitioning [15] which can be done
using distributed computations and are mostly known as
one-pass algorithms. In one-pass algorithms each node
is assigned to a partition upon arrival in a greedy manner
such that the objective function of the partition in graph
is maximized.

Community detection approaches in the literature mostly rely
solely on the link analysis and ignore the available information
in the modern social networks. As an example, Twitter entails
lots of metadata like user location, age, gender, geotags,
interests all of which can be used in clustering.

III. MOTIVATION

One of the benefits of community detection is refining the
recommender systems by suggesting the products used by
some members of the overlapping community to the rest. As an
example to illustrate the importance of overlapping community
detection consider the LinkedIn as your social network. In
LinkedIn each person can be part of various communities.
So now suppose two LinkedIn friends, A and B, that at
least have one community in common CAB , say University
of Wisconsin-Madison. If A now works as a recruiter in Face-
book, CFacebook, theres a chance that B might be interested
in a job offer from A to work in Facebook. This applies to
person B or any of his friends in any overlapping community
A is a member of. The reason is that people in overlapping
communities, share the same attributes and we can predict that
they will like each others’ attribute with a large probability.
As another example, consider all the frequently co-purchased

items in Amazon. If we build a network of Amazon products in
which an edge shows the product being co-purchased together
in which communities can be verified by the departments each
item belongs to and tags assigned by the users, sellers or the
Website. We can predict what items should be recommended
to the customer or customers with similar tastes in shopping
which will enhance the shopping experience of users. In
communities we find lots of triangle structures and one of the
well-known methods for detecting communities is detecting
the triangles within them. However due to the huge billion
node structure of modern social network graphs, the adjacency
matrix of their associated graphs are so giant that makes
the conventional clustering methods based solely on vertices
infeasible. The approach that we have adopted is clustering
edges rather than solely nodes. This way we will also be able
to recognize the overlapping communities. Due to the noise
in the topology structure, it is also very wise to make use
of node attributes in the network, to add some extra links to
the network and predict the communities based on both edge
clustering as well as node attribute similarities.

Event detection and event prediction are also two other
important motivations for finding overlapping communities.
Consider two Facebook groups Computer Engineering and
Computer Science. For both of these groups people should
have a valid @wisc.edu email to join which mean all the
users belong to the community of university of Wisconsin-
Madison. Considering the fact that students in both of the
fields have a lot of interests in common, if there’s an event
announced by one of the members in Computer Science
Facebook group which has some overlapping connections in
Computer Engineering Facebook group, there’s a great chance
that this event would be of interest to the rest of Computer
Engineering group members who even don’t have a common
connection with that person.

Spam and malicious user detection detection are two other
important motivations for detecting communities and their
overlaps. Once communities are detected, one can detect
the nodes that have different behaviours than nodes inside
the communities. In [21] authors have proposed the idea of
enhancing sentiment analysis using community detection in
Twitter. There are two main methods for semantic analysis:
machine learning and semantic orientation. Using the former
method a classification model should be trained for differen-
tiating between different semantic classes while in the latter
usually there exists a dictionary of subjectively meaningful
words for scoring the documents subjective content. In this
work they first cluster the tweets and detect the communities
and afterwards use the SentiWordNet[22] lexicon for gauging
the sentiments of each cluster. Before doing the sentiment
analysis, authors did some preprocessing on the tweets as
follows: converting all the characters to lowercase, removing
hashtags, retweet indicators, URLs and punctuations, tokeniz-
ing the tweets into individual words for looking up in the
aforementioned lexicon. While community detection and sen-
timent analysis are usually done separately in social network
contexts, in this paper authors have integrated them and do the

sentiment analysis in each individual community for achieving
much accurate results.

IV. RELATED WORK

There has been various approaches toward community de-
tection that we have picked a few of them here for overview.
Community detection problem falls into various categories of
strategies. GN algorithm: GN, known as Girvan and New-
man[16], hierarchically divides the graph to its partition using
the edge betweenness metric. In GN links are iteratively
removed from the graph based on the betweenness score
and the algorithm continues till the modularity of resulting
partition maximizes. Modularity achieved by GN algorithm
is one of the good quality measurement techniques. A faster
version of GN algorithm is starting with a null graph including
only the nodes and adding the edges using greedy method such
that maximizes possible modularity of GN algorithm in each
step.

• Infomap: Communities can be detected based on ran-
dom walks. The intuition behind random walk is the
higher probability of remaining within the community
through selecting an edge than going out of the com-
munity, as in proposed in Infomap[13], due to the fact
that edge density is higher within the community. In
Infomap network flow is modeled using the random walks
in an undirected graph. A random walker is presumed
to be walking inside a community if he is spending a
considerable amount of time traversing among the nodes
of the community. The directed version of Infomap is
similar to Google’s PageRank algorithm.

• LCA: Link cluster algorithm (LCA) is another category
which deals with detecting communities based on edges
rather than based on vertices. LCA considers the edges
to be in the same community based on their similari-
ties. LCA has the resolution problem in which links in
the neighborhood of dense communities show vanishing
similarities.

• SCD: Designed for detecting disjoint communities, in
SCD notion of WCC is used which can be parallelized
for speeding up the computations further. One of the
community metrics is its WCC which is based on the
fact that in large communities we have lots of triangles.
SCD consists of two phases: first phase which creates
a rudimentary clustering using clustering coefficients as
a heuristic, the second phase includes moving the nodes
around the communities for increasing the WCC of the
communities. Probability of two nearest neighbors of a
node, being nearest neighbors to each other, is considered
as clustering coefficient. Such a behaviour forms triangles
in a graph and usually within the communities we have
high clustering coefficients depicting more triangles. One
main problem with definition of clustering coefficient is
that it depends on the global properties of the network.
They claim that use of WCC and dealing with triangles
rather than counting the edges matters in their speedup
comparing to other state of the art algorithms. In order to

speed up their algorithm and consume less memory, they
remove all the edges that are not part of a triangle. They
sort the vertices decreasingly based on their clustering
coefficients and when two vertices have the same clus-
tering coefficient, they are sorted based on their degree.
In an iterative fashion, in a set of vertices called partition
P, they create a community for each vertex v and all of
its not-already visited neighbors. Eventually they add the
community C to the partition P. The last phase, partition
refinement is done through the use of WCC concept
which is based on hill climbing approach. They move
vertices between the already partitioned communities
until no further improvement in WCC of the partitions
is achieved higher than a predefined threshold.

• CESNA: developed at Stanford’s SNAP group is a
community detection method which includes the node
attributes along with clustering based on the graph topol-
ogy. They literally build communities based on edge
structure and node attributes (CESNA[17]). Using their
model, one can also detect overlapping communities.
Despite some of the literatures which assume that com-
munities and node/edge attributes are marginally indepen-
dent, they have supposed that communities create both
network structure alongside with attributes which shows
dependence between the network and attributes. One of
the main reasons they have employed node attributes is
compensating for missing data in presence of noise in the
network structure.

• BigCLAM : In BigCLAM authors discuss the fact that
despite many of the literature supposing there is less
density in the overlapping communities that the rest
of community without overlap, there is more density
wherein communities overlap. According to the result in
BigCLAM[7], community overlaps happen to be dense.
They have studied their groundtruth networks and have
realized that communities highly overlap which results in
the fact that nodes in the overlap of two communities have
more chances of being connected than in the rest of each
community. In BigCLAM they show the node community
membership using a bipartite affiliation network connect-
ing nodes of the graph to the communities they belong
to. Also they have incorporated the fact that people are
affiliated with various communities differently into their
algorithm and have given non-negative weights to each
of the edges in the bipartite network. BigCLAM can be
used for various types of network with non-overlapping,
overlapping and nested communities.

• CODICIL: Another community detection tool which
have used node attributes beside the network topology for
overcoming the noise in the link structure is CODICIL.
Noise in the links can be either incorrect links (false
positive) or missing links (false negative). CODICIL
creates content edges for improving the accuracy of the
algorithm while decreasing the runtime and increasing
its scalability. They create bigram of node attributes
and based on the cosine similarity or Jaccard coefficient

they find the nodes which are most similar and create
content edges based on their similarity. In CODICIL they
start with creating the content edges and continue with
sampling the union of the topology edges and the content
edges in a way to save only the edges that are locally in
a neighborhood. Eventually they partition the simplified
graph into communities.

• Walktrap[18]: Is based on a random walker trapped
in a community and communicating with community
member. The distance between two nodes is defined in
terms of random walk process in which short random
walks is taken between each pair of the communities.
This algorithm finishes after n − 1 passes in which all
of the nodes are combined into a single community. The
output of this algorithm is maximum modularity network
partitions. The intuition behind this algorithms is that if
two nodes i and j are in the same community, in order to
reach to node k, the distance shouldn’t be very different
using random walk. The walktrap clustering algorithm is
implemented in the iGraph package[23].

• Louvain: Tries to optimize the modularity of network
partitions using greedy optimization. The modularity is
first refined locally in small communities, and then these
smaller communities are considered as nodes and are
aggregated into bigger communities iteratively until the
maximum modularity is achieved.

V. CO-CLUSTERING

Co-clustering, a powerful data mining approach for dyadic
data, often known as biclustering identifies the structures and
patterns in the latent class models that sparse data exists. This
method is capable of detecting local patterns which might
not be detected by other well-known unsupervised one-way
clustering methods like K-means. In co-clustering rows of
matrix M are clustered into Xr rows while the columns
are clustered into Xc clusters simultaneously in a way that
minimizes the sum-squared deviation from the mean inside
each cluster. Co-clustering monotonically decreases the the
loss in mutual information. In DI-SIM they have replaced SVD
(singular value decomposition) for co-clustering the directed
graphs with eigendecomposition used in symmetric undirected
graphs. Authors’ motivation for use of SVD is the emerge
of big data and need for low rank approximation. SVD is a
generalization of eigendecomposition and in case of having
a symmetric squared matrix, SVD and eigendecomposition
are equivalent. In DI-SIM they have used number of common
parents and number of offspring as the similarity measure that
correspond to AT ×A and A×AT respectively in which A is
the adjacency matrix of a directed graph. Spectral co-clustering
clusters the word document matrix using the word document
bipartite graph. They can produce high quality results but
arent scalable. Most of the recent literature in this category
try to sparsify the matrices and parallelize the procedure in
order to make it more scalable. Co-clustering, an unsupervised
learning method, which has the complexity of NP-hard, has
been used widely in bioinformatics, text mining, market-based

data analysis, natural language processing, recommendation
system analysis, etc. In a social graph we might have noisy
data in our node attributes or missing link in our network
structure. Using co-clustering one can predict the missing
values.
DI − SIM [19] co-clustering algorithm which can be

generalized to any arbitrary matrix rather than just a very
symmetric specialized matrix. Authors have talked about co-
clustering in directed graphs which will help detecting the
communities. Citation networks, Google+, Twitter, Friendfeed,
etc are some well-known examples of asymmetric directed
networks. Facebook is good depiction of undirected social
graphs wherein all the relationships are symmetric. However,
studying it deeply, even friendships in Facebook are implicitly
asymmetric depending on who sends the friend request first
and who accepts it afterward. Currently Facebook follow
feature made it explicitly asymmetric directed graph. Apart
from that, Facebook interactions are all considered to be
asymmetric which makes clustering the directed social graphs
more meaningful. Due to existence of extensive research on
clustering the symmetric relations in graph, some of the
researchers have aimed to symmetrize the matrices in order
to use the known co-clustering algorithms.

VI. SPECTRAL CLUSTERING

Due to the fact that many of the clustering or community
detection algorithms have stemmed from spectral clustering
and it has played such an important role in the recent decades’
literature, this section is dedicated to its details. Spectral clus-
tering is one of the most frequently used traditional clustering
methods, also known as hierarchical divisive clustering due
to using a bottom-down approach for dividing nodes into
clusters. i.e. initially all nodes are considered as one cluster
and later are split into two and the process is repeated until
reaching a threshold. Spectral clustering is performed on the
laplacian matrix of the graph by calculating the eigenvectors
and eigenvalues of it. Eigenvectors are calculated as

(D− 1
2 (D −W)D− 1

2)x = λx

where D− 1
2 (D −W)D− 1

2 is the Laplacian matrix. The sign
of the elements of second eigenvector is used to split the
nodes into clusters such that the value of normalized cut is
least in the graph. The second eigenvector of the laplacian
matrix is called Fiedler vector. In general Laplacian matrix
gives similarity between the data elements in the matrix which
processing assists in spliting the node into clusters. However
for a giant graph, calculation complexity of eigenvector and
eigenvalues is way more and has very high time complexity as
it takes longer to converge. The traditional spectral clustering
method is approximately infeasible for very large graph and
the idea of distributed computation has been proposed to
address this problem which is yet based on slow processing
of random walks. Spectral clustering deals with connectivity
instead of geometrical proximity. So if the data isn’t very
well geometrically-separated, but clusters aren’t connected,

spectral clustering will work well. Spectral clustering has
been used in image, shape, color and motion segmentation,
face recognition, image clustering, community detection and
point correspondence. There are five methods of Laplacian
calculations as following[20]:

• simple Laplacian is given by

L = D −A

where D is the degree matrix defined as

di =

n∑
j=1

wi,j

in which only the diagonals have a value equal to weights
of all the edges connected to the specific node and
for an undirected matrix, D is symmetric. A is the
affinity matrix an N×N matrix with elements as A(i, j)
depicting the affinity between the nodes i and j .

• normalized Laplacian is calculated as

LN = D− 1
2LD− 1

2

which is used in the Ncut software developed by Shi and
Malik used in our simulations.

• generalized Laplacian is calculated as

LG = D−1L

• relaxed Laplacian

Lρ = L− ρD

• Ng, Jordan and Weiss Laplacian in which Ai,i = 0 is
calculated as

LNJW = D− 1
2AD− 1

2

Stages of spectral clustering are as follows:
1) determine what needs to be clustered, like as in an

image, decide on what feature to select (ex. points of
interest, regions, or the whole image)

2) creating the similarity matrix as shown in an example
in Figure 5.

3) create the Laplacian matrix L out of the graph as
depicted in Figure 6.

4) finding the eigenvalues and eigenvectors of matrix L as
calculated in Figure 7.

5) Map each point to a lower-dimensional representation
based on one or more eigenvectors.

Advantages of Spectral clustering include no need for a
distance measure, noise reduction, and that can be applied to
most of real-life networks. On a contrary, its disadvantages are
as follows: very slow, sensitive to image contrast, sensitivity to
parameter choice like cluster number, neighborhood, similarity
measure, etc., designed only for static data and not suitable
for evolutionary data, difficulty in interpretation of clustering
results, and being very computationally intensive for large
datasets.

(a)

(b)

Fig. 2: (a) A ring graph (b) Its Laplacian matrix

Fig. 1: A weighted graph and its corresponding similarity
matrix

VII. COMMUNITY DETECTION METHODS IN R

R provides various packages for community mining. One
of the most important ones, called iGraph[23], has various
community detection algorithms implemented as follows:

• edge.betweenness.community: In this method edges are
removed in the decreasing order of their edge between-
ness score (number of the shortest paths going through
each given edge). The intuition behind this algorithm is
the fact that the edges between communities are having
higher probability of being in multiple shortest paths as in
many cases they are the only option to traverse between
the different groups. This method has acceptable results
but its computational complexity is very high because at
every stage of the algorithm after the edge removal, the
edge betweenness scores have to be re-calculated. Also

Fig. 3: Eigenvalues and eigenvectors of the ring graph Lapla-
cian matrix

another shortcoming of this method is that is yielding
only the full dendrogram rather than specifying where to
cut the dendrogram. In order to realize where to cut the
dendrogram we have to use other metrics like modularity
scores at each level of the dendrogram to obtain a better
insight where to cut the dendrogram into communities.

– Directed edges: TRUE
– Weighted edges: TRUE
– Runtime: |V ||E|2

• fast.greedy.community: In this bottom-up algorithm a
quality function called modularity is being optimized in
a greedy fashion. In the beginning, each single vertex
depicts a community itself and iteratively communities
merge in a way that each merge is locally optimal and
results in largest modularity at each level. The stopping
criterion of the algorithm is no further increase in the

modularity. Fast greedy algorithm not only gives the
dendrogram but also provides the clustering. This method
is really fast and is mostly used as a first approximation
due to no need for tuning. The main disadvantage in using
this method is the resolution problem in which the small
communities get merged with their neighbor communities
till reaching the stop criterion.

– Directed edges: FALSE
– Weighted edges: TRUE
– Runtime: |V ||E| log|V |

• walktrap.community: This method is based on random
walks and the intuition behind using it is if you randomly
walk in the graph, it is very likely that you stay within the
same cluster because according to the definitions, density
of edges within a community is really high and the chance
the an edge take you to another member of the same com-
munity is higher than an edge taking you outside of the
community and taking random walks takes longer within
a community. Using the result of the these random walks
the algorithm merges separate communities in a bottom-
up manner like that of fastgreedy.community algorithm.
Modularity score can be used for choosing where to
cut the dendrogram. Comparing to fastgreedy.community
algorithm, randomwalk.community is slower but more
accurate.

– Directed edges: FALSE
– Weighted edges: TRUE
– Runtime: |V ||E|2

• spinglass.community is an approach from statistical
physics, based on the so-called Potts model. In this
model, each particle (i.e. vertex) can be in one of c spin
states, and the interactions between the particles (i.e. the
edges of the graph) specify which pairs of vertices would
prefer to stay in the same spin state and which ones
prefer to have different spin states. The model is then
simulated for a given number of steps, and the spin states
of the particles in the end define the communities. The
consequences are as follows: 1) There will never be more
than c communities in the end, although you can set c
to as high as 200, which is likely to be enough for your
purposes. 2) There may be less than c communities in
the end as some of the spin states may become empty.
3) It is not guaranteed that nodes in completely remote
(or disconencted) parts of the networks have different
spin states. This is more likely to be a problem for
disconnected graphs only, so I would not worry about
that. The method is not particularly fast and not determin-
istic (because of the simulation itself), but has a tunable
resolution parameter that determines the cluster sizes. A
variant of the spinglass method can also take into account
negative links (i.e. links whose endpoints prefer to be in
different communities). leading.eigenvector.community:
A top-down hierarchical method for optimizing the mod-
ularity function that in each step we split the graph into
two subgroups such that the splits itself gains a decent

increase in the modularity value. The split is decided
by computing the leading eigenvectors of the modularity
matrix. The stopping criterion prevents tightly connected
clusters to be split more. If we have a degenerate graph,
the algorithm might not work because of eigenvector
computations if the ARPACK eigenvector is unstable.
However if the graph is non-degenerate, there are high
chance of achieving a greater modularity score than that
of the fastgreedy.community method while being tad bit
slower.

– Directed edges: FALSE
– Weighted edges: FALSE
– Runtime: c|V |2 + |E|

• label.propagation.community: In this algorithm each node
is given a label out of the K available labels. This
method iteratively re-assigns labels to the nodes such
that every node receives the most frequent label of all
its existing neighbors synchronously. If the label of each
of the nodes is the same as the most frequent label
in their neighborhoods. This algorithm is very fast but
doesnt always converge to the same final result due to
various initial random configurations. To overcome this
shortcoming, one can run the algorithm a large number
of times per graph for building consensus labeling but its
a really tedious task.

– Directed edges: FALSE
– Weighted edges: TRUE
– Runtime: |V |+ |E|

• infomap.community: add here
– Directed edges: TRUE
– Weighted edges: TRUE
– Weighted nodes: TRUE
– Runtime: none given; looks worst case like |V |(|V |+
|E|) based on quick reading.

VIII. EVALUATION METHODS

For the purpose of evaluation we need networks with
groundtruth communities. Yang and Leskovec [3] have created
benchmarks with real datasets in which groundtruth commu-
nities are specified many of them have been used in the very
recent literature as a method for evaluation. These datasets
can be accessed in SNAP group at Stanford and are open
to public. They have various kind of networks which serves
different purposes in small, medium or very large size.

Quality functions can be used when there’s no groundtruth
for the communities to assess the quality of detected com-
munities. Three of the most useful quality functions are as
follows:

• Coverage is defined as ratio between the intra-community
edges and all the edges in the graph and is one of
the simplest measures for community quality which is
biased towards coarse-grained communities. Modularity
is defined as having more internal edges and less external
edges as is defined as

• Modularity measures the strength of each partition by
considering the degree distribution. One main problem
with modularity approach is that it cannot detect well-
defined small communities when the graphs are extremely
large.

• Conductance is considered as ratio of number of edges
within the community over those leaving it. Conductance
is a good measure because problem of detecting commu-
nities can be seen as minimum cut problem in which a
cut is a partition of vertices within a graph that can set
the graph into two or more disjoint sets.
Other important metrics used are WCC which is weighted
community feature. They higher the WCC, the better is
the quality of the detected community, NMI which is
normalized mutual information accounts for the overlap
between the communities, Jaccard index, Cosine similar-
ity, and F1 score which all can be used to detect the
quality of the community detection algorithms and their
overlaps at node level.

IX. FUTURE WORK

As data can get so large, distributed data mining al-
gorithms are becoming more pronounced. In DisCo
[11] they have used distributed co-clustering using Map-
Reduce programming model. Authors have stored their
adjacency list as a list of key-value pairs in the HDFS.
They initialize two Map-Reduce jobs for iterating be-
tween rows and columns as well as the synchronization
step for the purpose of updating the global parameters
and run them on the hadoop cluster. As we have selected
modern social networks as our target, due to huge number
of edges, use of distributed co-clustering algorithms will
be essential to the improvement of our research. Also
detecting communities and overlapping communities in
tripartite graphs which are hypergraphs consisting of
users, resources and tags and each hyperedge (u,t,r)
denotes that a user u has assigned tag t to the resource
r has many applications in networks like last.fm and
pandora.com. In such networks, each node usually be-
longs to multiple communities and detecting overlapping
communities is of higher importance for recommending
new resources and new friends to users. Also recently
some community mining researchers have shifted the
gears towards detecting evolution in the community and
predicting the evolution in the future.

REFERENCES

[1] M. Cosica, F. Gianootti, and D. Pedreschi,“ A Classification for
Community Discovery Methods in Complex Networks,” CoRR
as/1206.3552 (2012)

[2] F. Moradi, T. Olovsson, P. Tsigas, “ An Evaluation of Commu-
nity Detection Algorithms on Large-Scale Email Traffic,” SEA
283-294 (2012)

[3] J. Yang, and J. Leskovec, “Defining and Evaluating Network
Communities Based on Ground-Truth,” ICDM 745-754 (2012)

[4] Y. Song, and S. Bressan, “Fast Community Detection,” DEXA
404-418 (2013)

[5] A. Prat-Prez, D. Dominguez-Sal, J. M. Brunat, and J. Larriba-
Pey, “ Shaping Communities out of Triangles ,” CoRR
abs/1207.6269 (2012)

[6] A. Prat-Prez, D. Dominguez-Sal, and J. Larriba-Pey, “ High
Quality, Scalable and Parallel Community Detection for Large
Real Graphs ,” WWW, (2014)

[7] J. Yang, and J. Leskovec, “Overlapping community detection
at scale: a nonnegative matrix factorization approach,” WSDM
587-596 (2013)

[8] Y. Ruan, D. Fuhry, and S. Parthasarathy,“ Efficient Community
Detection in Large Networks using Content and Links,” CoRR
abs/1212.0146 (2012)

[9] G. Csardi, and T. Nepusz, “The igraph software package for
complex network research,” IJCS (2006)

[10] Stanford Network Analysis Project https://snap.stanford.edu/
[11] S. Papadimitriou, and J. Sun, “DisCo: Distributed Co-clustering

with Map-Reduce: A Case Study towards Petabyte-Scale End-
to-End Mining,” ICDM 512-521 (2008)

[12] INFOMAP code http://www.mapequation.org
[13] M. Rosvall, and C. T. Bergstrom, “Maps of random walks

on complex networks reveal community structure,” PNAS 1118
1123 (2008)

[14] A. Chakraborty, S. Ghosh, and N. Ganguly, “ Detecting over-
lapping communities in folksonomies ,” HT 213-218 (2012)

[15] C. E. Tsourakakis, C. Gkantsidis, B.z. Radunovic, and M.
Vojnovic, “Streaming Graph Partitioning for Massive Scale
Graphs,” Microsoft Research Technical Report (2012)

[16] S. Fortunato, and A. Lancichinetti, “Community detection algo-
rithms: a comparative analysis,” VALUETOOLS (2009)

[17] J. Yang, J. J. McAuley, and J. Leskovec, “Community Detection
in Networks with Node Attributes,” CoRR abs/1401.7267 (2014)

[18] P. Pons, and M. Latapy, “Computing Communities in Large
Networks Using Random Walks,” ISCIS 284-293 (2005)

[19] K. Rohe, and B. Yu, “Co-clustering for Directed Graphs; the
Stochastic Co-Blockmodel and a Spectral Algorithm,” Technical
Report at UW Madison Statistics Department (2012)

[20] U. Luxburg,“A tutorial on Spectral Clustering,” Statistics and
Computing 17(4),395-416 (2007)

[21] W. Deitrick, B. Valyou, W. Jones, J. Timian, and W. Hu,
“Enhancing Sentiment Analysis on Twitter Using Community
Detection,” CN, Vol.5 No.3 (2013)

[22] http://sentiwordnet.isti.cnr.it/
[23] , G. Csardi, and T. Nepusz, “The igraph software package for

complex network research,” InterJournal, Complex Systems 1695.
2006. http://igraph.org

