Exploiting Heterogeneity in Amazon EC2 for Saving Cost

M. Jalal*, V. VaradarjanT, M. Swiftf
*ECE Department, University of Wisconsin-Madison
jalal@wisc.edu
fcs Department, University of Wisconsin-Madison
{venkatv, swift } @cs.wisc.edu

I. ABSTRACT

Performance heterogeneity observed during running instances on
Amazon EC2 even amongst the nodes with the same specifications,
makes us revise the pricing policies. In EC2, pricing is per hour and
if the client is idle he wouldnt be charged but even when hes being
charged he might not be charged fairly enough. In this project we
aim to provide a client-side strategy management for selecting the
nodes from EC2 and migrating the instances depending on various
metric including node capabilities and needed performance. The
aim of this project is gaining more efficiency improvement through
use of better policies and assigning the best node type of each zone
as a duplication in the bundle of nodes which we select for a client.
In case of failure in EC2 nodes or overload in any of the primary
nodes selected by client, load will be migrated to another sub-type
node in the client node bundle within the same instance type.

II. INTRODUCTION

Having multiple cloud provider in cloud computing era, makes
metrics like pricing to be more pronounced. In this study we focus on
Amazon EC2 pricing which is flat rate pricing. EC2 claims that Pay
only for what you use . EC2 even has a bill calculator using which you
can estimate your monthly cost. Amazon instances are divided into
standard, micro, high-memory, high-CPU, cluster compute, cluster
GPU, high I/O and high storage instances each of which are tuned
for specific workloads[7] . All the aforementioned instance types can
be bought in reserved or on-demand fashion. Also recently Amazon
has announced its spot instances which can be bid on the price the
customer is willing to pay and these instances use the unused EC2
capacity. Amazon EC2 tries to maintain the same CPU computing
capability for each instance type even though there might be some
slight CPU frequency heterogeneity in the underlying infrastructure
and calls it ECU which stands for Elastic Computing Unit and the
higher the ECU is, the more computing power that instance type
has. In Table 1 all the instance types are shown categorized in
their instance family and their specifications like ECU, memory,
disk and I/O capabilities are shown accordingly. Focus of this study
is performance variation due to hardware heterogeneity. Upgrading
the hardware is one main reason for hardware heterogeneity even
within the same instance type. In this study m1l.small instance has
been selected from first generation standard instances. Within this
instance type, there are four various hardware type named AMD,
E5430, ES507, and E5645 which differ slightly in CPU frequency
while differing almost significantly in cache size shown in Table
2. In this research, we focus on customer-level placement strategies
in which multiple workloads can run at the same type. Within the
same instance, there is significant hardware differences which creates
performance gaps. In these strategies we decide to migrate and tasks
on the instance sub-type which has better performance to save cost.
These strategies are not dependent on Amazon EC2 provider and run
on client-side [8].

PH

Amazon ml.small
SE +/-0.78

Amazon ml.large
SE +-0.27

Amazon ml.xlarge
S5E +/-0.19

Amazon m2.xlarge
SE +/-0.09

Armazon m2.2xlarge
SE +/-0.07

Amazon m2.4xlarge
SE +/-0.03

Amazon cl.medium
SE +/-1.05

Amazon cl.xlarge
SE +/-0.15

4 H H H H

60 120 180 240 300

Fig. 1. Time to compile Apache on various instance types

In Figure.1 the huge performance heterogeneity of running jobs on
various instance types is illustrated. Though the focus of this study is
sub-type performance heterogeneity, this figure is a good illustration
of heterogeneity in clouds. This figure also depicts that for running a
task with optimum performance you should be aware of each instance
type specification as each instance type is tuned for running a specific
kind of workload.

TABLE I
HARDWARE HETEROGENEITY IN M1.SMALL INSTANCE TYPE

CPU Frequency Cache Introduced
AMD 2218 HE 2.6 GHz 1 MB Q1 2007
Intel E5430 2.66 GHz 6 MB Q4 2007
Intel E5507 226 GHz 4 MB Q1 2010
Intel E5645 2.4 GHz 12 MB QI1 2010

Table 2 shows the heterogeneity in ml.small instance type and
shows that the cause for hardware heterogeneity is different years
these instances have been introduced to EC2 cloud.

III. RELATED WORK

It is shown in [2] that variation within the same sub-type of an
instance is slightly small while the variation between different sub-
type of an instance might be about 60 percent. It is mentioned if
EC2 tenants select better sub-type machines for running their jobs,
they can gain 30 percent saving in the cost. They have tried to
reduce the cost by finding the best performing node in an instance

Instance Family Instance Type ECU Memory (GB) Disk (GB) 1/0
Standard ml.small 1 1.7 160 moderate
ml.medium 2 3.75 410 moderate
ml.large 4 7.5 850 high
ml.xlarge 8 15 690 high
Micro tl.micro Up to 2 631 MB EBS only low
High-Memory m2.xlarge 6.5 17.1 420 moderate
m?2.2xlarge 13 342 850 high
m?2.4xlarge 26 68.4 1690 high
High-CPU cl.medium 5 1.7 350 moderate
cl.xlarge 20 7 1690 high
Cluster ccl.4xlarge 335 23 1690 very high
ccl.8xlarge 88 60.5 3370 very high
GPU cgl.4xlarge 33.5 22 1690 very high
TABLE 1

AMAZON EC2 INSTANCES [5].

type and run the job on it. Also they have tried to model the cost
as well as cost saving using elaborate formulas. They have used
Httperf for web server throughput measurement as an application-
level benchmark. Their dynamic network testing is rather CPU hungry
than network hungry. CloudMeter[1], a paper written by Farley et al.
, studies nature and range of variation across various workload and
has realized the significant performance heterogeneity in the cloud
computing environment. One main source for this heterogeneity is
different node architectures across the cloud. In our study, currently
we have 4 different node architectures among which instances are
being migrated. In [1] tenants affects the placement policy only
by starting and stopping the instances. Depending on minimizing
the cost or latency, tenants select different strategie among up-front
exploration, and opportunistic replacement.

In terms of heterogeneity in clouds, several studies has been
conducted. In [4] they have used GPUs for VMM cloud management
task acceleration. For showing benefits of hypervisor acceleration,
they have used GPU for speeding up the MDS5 hashing. They have
shown that memory cleanup, batch page table updates, memory
hashing, memory compression and virus signature scanning in VMM
will benefit significantly by use of GPU acceleration. Authors in
[3] have used Google trace in a heterogeneous cloud environment
and have studied various scheduling schemes. They have shown
that the heterogeneity in the Google Trace public workload will
decrease the efficiency of traditional scheduling algorithm. Not only
heterogeneous, the workload is highly dynamic over time including
both short times and very long-term jobs.They have provided new
resource management strategies which will fit the dynamicity of the
workload as well as heterogeneity of the machines as well as tasks.

IV. PROPOSED IDEA

Given a mix of workloads with different performance on different
node types and a mix of node types, we desire to study efficiency
of migration on customer-side if they are running their jobs on bad
nodes. Amazon EC2 currently provides no API for moving your job
from one node to another within the same instance type hence we
believe existence of such an API is necessary for better pricing and
gaining better performance within the same paid price. Customer
decides to select one of the placement strategies depending on his
needs and tries to gain the most possible performance within the price
he pays by appropriate timing of his job injection into the cloud as
well as duration of his job after selecting a suitable strategy.

A. Simulation

Multi-tenant CloudMeter simulator developed in Dr. Swifts re-
search group was configured in way to run multiple workload
simultaneously. This simulator was configured to have have three later
of administration named customer level, application level and data-
center level. A set of simulations has been done to study efficiency
of migration on tenant-side from one bad node to another node with
better performance for the mentioned task in the same instance type
for reducing the price. Simulator output is all of the instances of
each tenant in the beginning of each time quanta as well as all the
instance killings and migrations during that quanta. Also performance
has been calculated for all the active instances of a tenant in the end
of each time quanta.The final result of simulator includes number of
migrations in the whole run for each tenant as well as their effective
rate and total done work. In [] they have used historical performance
of a tenants job for realizing it future performance needs.

B. Configuration File

This simulator accepts a configuration file consisting information
regarding the workloads. The configuration file includes number of
tenants, number of instances each tenant has, migration penalty in
second, job duration and type of strategy. In table 4 you can see all
the aforementioned information regarding tenant configuration. Also
various instance types and within each various instance sub-type are
provided in the configuration file including information about fraction
of machines covered by this instance sub-type and its mean as well
as its standard deviation.

TABLE III
PERFORMANCE STATISTICS FOR NER IN M1.SMALL INSTANCE TYPE

CPU Fraction Mean StDev
AMD 2218 HE 0.18 9.07 0.29
Intel E5430 0.25 10.47 0.44
Intel E5507 0.35 10.38 0.62
Intel E5645 0.22 11.94 047

In table 3 part of our configuration file for m1.small subtype related
to NER workload is shown.

C. Workload

Different aspects of the system behaviour must be stressed so we
need to have at least two extreme workloads one concentrated on
CPU-intensive computations like NER(a natural language recognizer)
and the one concentrated on bandwidth-hungry applications like

Strategy Start Quanta T A B Migration Penalty mu AlphaAgg AlphaServ Workload Type
CPU-MAX 0 13 20 10 180 2 0 1 NER
CPU-MAX 0 13 20 10 180 2 0 1 Apache
CPU-MAX 10 14 20 10 180 2 0 1 NER
CPU-MAX 10 14 20 10 180 2 0 1 Apache

TABLE IV

TENANT-RELATED INFORMATION IN CONFIGURATION FILE

Apache Web Server. In future studies, it is advisable to use more
workload for different kind of computing including HPC.

D. Placement Strategies

There are various placement strategies in CloudMeter simulator
which are basically categorized into upfront exploration and oppor-
tunistic replacement. In the former, tenants launch more instances
(A+B) than what they really need and kill the B worst instances,
say in terms of performance while in the latter, depending on future
performance needs for the instances, tenants decide to migrate an
instance or not. CPU-MAX and PERF-MAX strategies both belong
to upfront exploration and they kill the B worst instances based
on maximum CPU and maximum performance respectively. Also
CPU-OPREP and Upfront-OPREP are two opportunistic replacement
strategies studied in this research.

I have selected CPU-OPREP, Upfront-OPREP, and CPU-MAX
among the various placement gaming available in CloudMeter due
to lack of time.

E. Simulation Results

We have done various studies in our workload regarding duration
of jobs and their start time on number of migrations. Also number
of migrations per hour has been investigated in some of the selected
strategies. We also decided to exploit Firstly I ran three different
durations (very short, medium, and long) on the unmodified Cloud-
Meter first with non-overlapping jobs as shown in Table 5 as well
as injecting the jobs when 70 percent of previous jobs has finished
in overlapping fashion depicted in table 6. I did the same kind of
simulations in my modified simulator shown in Table 7 and Table 8
respectively.

TABLE V
NUMBER OF MIGRATIONS AND EFFECTIVE RATE IN SINGLE-WORKLOAD
SIMULATOR RUNNING NON-OVERLAPPING JOBS

Strategy Job Duration ~ Migrations Effective rate
CPU-MAX 2 0 1.05
CPU-OPREP 2 0 1.04
CPU-MAX 20 72 9.52
CPU-OPREP 20 18 6.88
CPU-MAX 100 63 5.93
CPU-OPREP 100 24 5.56
TABLE VI

NUMBER OF MIGRATIONS AND EFFECTIVE RATE IN SINGLE-WORKLOAD
SIMULATOR RUNNING OVERLAPPING JOBS

Strategy Job Duration Migrations Effective rate
CPU-MAX 20 28 9.2
CPU-OPREP 20 47 7.16
CPU-MAX 100 72 6.82
CPU-OPREP 100 23 6.38

TABLE VII
NUMBER OF MIGRATIONS AND EFFECTIVE RATE IN MULTI-WORKLOAD
SIMULATOR RUNNING NON-OVERLAPPING JOBS

Strategy Job Duration Migrations Effective rate
CPU-MAX 2 0 0.13
CPU-OPREP 2 0 0.125
CPU-MAX 20 30 1.16
CPU-OPREP 20 193 1.07
CPU-MAX 100 31 5.73
CPU-OPREP 100 991 5.28
TABLE VIII

NUMBER OF MIGRATIONS AND EFFECTIVE RATE IN MULTI-WORKLOAD
SIMULATOR RUNNING OVERLAPPING JOBS

Strategy Job Duration ~ Migrations Effective rate
CPU-MAX 20 13 1.72
CPU-OPREP 20 333 1.59
CPU-MAX 100 18 6.62
CPU-OPREP 100 1456 6.07

As shown in the above tables, when we have very short term jobs
theres no migration involved no matter what strategy we use. Also
it is shown that when we have overlapping jobs injected in the 70
percent of completion of half of the previously injected time at start
time, depending on used strategies various benefits are shown. As an
example in CPU-MAX injecting jobs in overlapping method reduces
number of migrations significantly while in CPU-OPREP strategy
using the overlapping method will increase number of migrations
significantly.

V. CONCLUSION

Heterogeneity in cloud environment due to various hardware up-
grades will end in significant performance heterogeneity even among
the same instance sub-types. EC2 flat hourly rate doesnt address this
issue and no matter how much performance you gain, you will have
the same bill while using the same instance type. In this research we
have modified the simulator for being able to run multiple workload
and multiple available instance type of the approximately the same
computing capability. Results show that in the configured simulator
theres slightly less delay and depending on the type of placement
strategy used we have either increased or decreased number of
migrations comparing their single-workload counterpart. This work is
yet in progress and results are not very finalized. I also studies effect
of job injection time on number of migration and realized that if all
the tenants inject their jobs simultaneously, we will have tremendous
number of migrations no matter what the selected strategy is. Also If
we inject the tasks when about 70 percent of half of the other tenant
tasks have been accomplished, we will face less migrations due to
lightly loaded nodes.

VI. FUTURE WORK

I believe not only we should study the performance fluctuations
in ml.small but also we should consider other instance types. Per-
formance fluctuation is almost doubled in m1.xlarge instances which
will then show how beneficial our study truly is. In a wider study I
would extract the information for all the EC2 instance types (though
Im agree that selecting ml.small will lead to the approximately
same result). Amazon EC2 has this idea of spot pricing [9] which
should be investigated further as they have tried to improve the
utilization using this idea. Using the spot price history will help us
have better accuracy in our simulation results. Also we can study
effect of single-thread and multi-thread on performance heterogeneity
as well. Eventually we can use CPU benchmarking information in [6]
for extending simulator (which currently supports m1.small instance
type of Amazon EC2) to cover other cloud providers architecture.
For this purpose, migration penalty modeling for various cloud
provider should be investigated as well as preparing configuration
files accordingly.

VII. ACKNOWLEDGEMENT

I am grateful for Dr. Swifts guidance throughout the project and
for providing me with the CloudMeter simulator. Also I would like
to thank Venkatanathan Varadarjan for helping me in configuring the
simulator. Thanks are due to Dr. Shan Lu for encouraging me to
pursue this project and her comments in better accomplishing it.

REFERENCES

[1] B. Farley et al., More for Your Money: Exploiting Performance Hetero-
geneity in Public Clouds, SOCC 2012.

[2] Z. Ou et al., Exploiting Hardware Heterogeneity within the Same Instance
Type of Amazon EC2 , HotCloud 2012.

[3] C. Reiss et al, Heterogeneity and Dynamicity of Clouds at Scale: Google
Trace Analysis, SOCC 2012.

[4] S. Suneja et al., Accelerating The Cloud with Heterogeneous Computing
, HotCloud 2012.

[5] H.Zhuang, Performance Evaluation of Virtualization in Cloud Data
Center , M.Sc. Thesis, Aolto University, 2012.

[6] CPU Benchmarking in the Cloud, http://blog.cloudharmony.com/2010/05/
what-is-ecu-cpu-benchmarking-in-cloud.html.

[7]1 Amazon Instance Types http://aws.amazon.com/ec2/instance-types/.

[8] Amazon EC2 Pricing http://aws.amazon.com/ec2/pricing/.

[9] Spot Pricing http://aws.amazon.com/ec2/spot-instances/.

